
iris
Release 5.2.1

Dec 05, 2019

Contents

1 Links 3

2 General Documentation 5
2.1 Installation . 5
2.2 Using iris: typical workflow . 6
2.3 Datasets in Iris . 16
2.4 Dataset Plug-ins . 21
2.5 Subclassing AbstractRawDataset . 22
2.6 Reference/API . 23
2.7 What’s new . 36

3 Authors 41

Index 43

i

ii

iris, Release 5.2.1

iris is both a library for interacting with ultrafast electron diffraction data, as well as a GUI frontend to interactively
explore this data.

The code presented herein has been in use at some point by the Siwick research group.

Contents 1

http://www.physics.mcgill.ca/siwicklab

iris, Release 5.2.1

2 Contents

CHAPTER 1

Links

• Source code

• Issues

3

https://github.com/LaurentRDC/iris-ued
https://github.com/LaurentRDC/iris-ued/issues

iris, Release 5.2.1

4 Chapter 1. Links

CHAPTER 2

General Documentation

2.1 Installation

2.1.1 Standalone Installation

Starting with iris 5.1.0, standalone Windows installers and executables are available. You can find them on the
GitHub release page.

The standalone installers and executables make the installation of iris completely separate from any other Python
installation. This method should be preferred, unless Python scripting using the iris library is required.

2.1.2 Installing the Python Package

If you want to script using iris data structures and algorithms, you need to install the iris-ued package.

Note: Users are strongly recommended to manage these dependencies with the excellent Intel Distribution for Python
which provides easy access to all of the above dependencies and more.

iris is available on PyPI as iris-ued:

python -m pip install iris-ued

iris is also available on the conda-forge channel:

conda config --add channels conda-forge
conda install iris-ued

You can install the latest developer version of iris by cloning the git repository:

git clone https://github.com/LaurentRDC/iris-ued.git

. . . then installing the package with:

5

https://github.com/LaurentRDC/iris-ued/releases/latest/
https://software.intel.com/en-us/intel-distribution-for-python

iris, Release 5.2.1

cd iris-ued
python setup.py install

In Python code, iris can be imported as follows

import iris

2.1.3 Test data

Test reduced datasets are made available by the Siwick research group. The data can be accessed on the public data
repository

2.1.4 Testing

If you want to check that all the tests are running correctly with your Python configuration, type:

python setup.py test

2.2 Using iris: typical workflow

2.2.1 Before you start

You might want to download test datasets before you start to play around. Test reduced datasets are made available by
the Siwick research group. The data can be accessed on the public data repository

2.2.2 Startup

To start the GUI from the command line:

> python -m iris

Note that the command-line interface has some useful options:

> python -m iris --help
usage: iris [-h] [-v] {open,docs} ...

Iris is both a library for interacting with ultrafast electron diffraction
data, as well as a GUI frontend for interactively exploring this data. Below
are some helpful commands.

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit

Subcommands:
{open,docs} Available sub-commands

open Dataset to open with iris start-up.
docs Open online documentation in your default web browser.

(continues on next page)

6 Chapter 2. General Documentation

http://www.physics.mcgill.ca/siwicklab/publications.html
http://www.physics.mcgill.ca/siwicklab/publications.html
http://www.physics.mcgill.ca/siwicklab/publications.html

iris, Release 5.2.1

(continued from previous page)

Running this command without any parameters will launch the graphical user
interface. Documentation is available here: https://iris-ued.readthedocs.io/

Most importantly, you can programatically start the GUI with opening a dataset:

> python -m iris open --reduced ~/dataset.hdf5

The path can lead to a reduced HDF5 file (flag –reduced) or a raw dataset (flag –raw). In case of a raw dataset, the
dataset format will be guessed with the same rules as iris.open_raw().

The first blank screen is shown below.

2.2.3 Loading raw data

The file menu can be used to load raw data. Depending on the installed plugins, options will be available. To install a
new plug-in, use the following option:

You’ll be able to select a plug-in file which will be copied to the plug-in directory. The plugin can be used immediately.
Once a plug-in is installed, a new raw data format will appear.

2.2. Using iris: typical workflow 7

iris, Release 5.2.1

Here is an example of loaded raw data: Raw data controls are available to the right.

2.2.4 Data reduction

Once raw data is loaded, the following option becomes available:

This opens the data reduction dialog.

8 Chapter 2. General Documentation

iris, Release 5.2.1

Parts of the data can be masked. To add a mask, use the controls on the top of the dialog. Masks can be moved and
resized. Note that all images will be masked, so this is best for beam blocks, known hot pixels, etc.

A preview of the mask can be generated:

2.2. Using iris: typical workflow 9

iris, Release 5.2.1

Once you are satisfied with the processing parameters, the ‘Launch processing’ button will open a file dialog so that
you can choose where to save the reduced HDF5 file. Processing might take a few minutes.

2.2.5 Data exploration

Once processing is complete, the resulting diffraction dataset will be loaded. New controls will be available.

The ‘Show/hide peak dynamics’ button can be toggled. Doing so allows for the exploration of the time-evolution of
the data.

10 Chapter 2. General Documentation

iris, Release 5.2.1

When a diffraction dataset is loaded, new options become available.

One of these options, ‘Compute angular averages’, is best suited for polycrystalline diffraction. It opens the following
dialog:

2.2. Using iris: typical workflow 11

iris, Release 5.2.1

Drag and resize the red circle so it coincides with a diffraction ring. This will allow for the determination of the
diffraction center. The averaging will happen after clicking ‘Promote’. This might take a few minutes.

2.2.6 Polycrystalline data exploration

After the azimuthal averages have been computed, a new section of the GUI will be made available, with additional
controls.

12 Chapter 2. General Documentation

iris, Release 5.2.1

The top screen shows the superposition of all radial profiles. Dragging the yellow lines allows for exploration of time-
evolution on the bottom screen. Note that the trace colors on the top are associated with the time-points and colors of
the bottom image.

The baseline can be removed using the controls on the right. You can play with the baseline parameters and compute
a baseline many times without any problems.

2.2. Using iris: typical workflow 13

iris, Release 5.2.1

2.2.7 Polycrystalline scattering vector calibration

On the above images, the scattering vector range might not be right. To calibrate the scattering vector range based on
a known structure, select the ‘Calibrate scattering vector’ option from the ‘Dataset’ menu.

This opens the calibration dialog.

14 Chapter 2. General Documentation

iris, Release 5.2.1

You must either select a structure file (CIF) or one of the built-in structures. Once a structure is selected, it’s description
will be printed on the screen. Make sure this is the crystal structure you expect.

Then, drag the left and right yellow bars on two diffraction peaks with known Miller indices. Click ‘Calibrate’ to
calibrate the scattering vector range.

2.2. Using iris: typical workflow 15

iris, Release 5.2.1

2.3 Datasets in Iris

2.3.1 The DiffractionDataset object

The DiffractionDataset object is the basis for iris’s interaction with ultrafast electron diffraction data.
DiffractionDataset objects are simply HDF5 files with a specific layout, and associated methods:

from iris import DiffractionDataset
import h5py

assert issubclass(DiffractionDataset, h5py.File) # yep

You can take a look at h5py’s documentation to familiarize yourself with h5py.File.

You can also use other HDF5 bindings to inspect DiffractionDataset instances.

Creating a DiffractionDataset

An easy way to create a DiffractionDataset is through the DiffractionDataset.from_collection()
method, which saves diffraction patterns and metadata:

classmethod DiffractionDataset.from_collection(patterns, filename, time_points, meta-
data, valid_mask=None, dtype=None,
ckwargs=None, callback=None,
**kwargs)

Create a DiffractionDataset from a collection of diffraction patterns and metadata.

Parameters

• patterns (iterable of ndarray or ndarray) – Diffraction patterns. These
should be in the same order as time_points. Note that the iterable can be a generator, in
which case it will be consumed.

• filename (str or path-like) – Path to the assembled DiffractionDataset.

• time_points (array_like, shape (N,)) – Time-points of the diffraction pat-
terns, in picoseconds.

• metadata (dict) – Valid keys are contained in DiffractionDataset.
valid_metadata.

• valid_mask (ndarray or None, optional) – Boolean array that evaluates to
True on valid pixels. This information is useful in cases where a beamblock is used.

• dtype (dtype or None, optional) – Patterns will be cast to dtype. If None (de-
fault), dtype will be set to the same data-type as the first pattern in patterns.

• ckwargs (dict, optional) – HDF5 compression keyword arguments. Refer to
h5py’s documentation for details. Default is to use the lzf compression pipeline.

• callback (callable or None, optional) – Callable that takes an int between 0
and 99. This can be used for progress update when patterns is a generator and involves
large computations.

• kwargs – Keywords are passed to h5py.File constructor. Default is file-mode ‘x’,
which raises error if file already exists. Default libver is ‘latest’.

Returns dataset

Return type DiffractionDataset

16 Chapter 2. General Documentation

http://docs.h5py.org/en/latest/
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None

iris, Release 5.2.1

The required metadata that must be passed to DiffractionDataset.from_collection() is also
listed in DiffractionDataset.valid_metadata. Metadata not listed in DiffractionDataset.
valid_metadata will be ignored.

An other possibility is to create a DiffractionDataset from a AbstractRawDataset subclass using the
DiffractionDataset.from_raw() method :

classmethod DiffractionDataset.from_raw(raw, filename, exclude_scans=None,
valid_mask=None, processes=1, callback=None,
align=True, normalize=True, ckwargs=None,
dtype=None, **kwargs)

Create a DiffractionDataset from a subclass of AbstractRawDataset.

Parameters

• raw (AbstractRawDataset instance) – Raw dataset instance.

• filename (str or path-like) – Path to the assembled DiffractionDataset.

• exclude_scans (iterable of ints or None, optional) – Scans to ex-
clude from the processing. Default is to include all scans.

• valid_mask (ndarray or None, optional) – Boolean array that evaluates to
True on valid pixels. This information is useful in cases where a beamblock is used.

• processes (int or None, optional) – Number of Processes to spawn for pro-
cessing. Default is number of available CPU cores.

• callback (callable or None, optional) – Callable that takes an int between 0
and 99. This can be used for progress update.

• align (bool, optional) – If True (default), raw images will be aligned on a per-scan
basis.

• normalize (bool, optional) – If True, images within a scan are normalized to the
same integrated diffracted intensity.

• ckwargs (dict or None, optional) – HDF5 compression keyword arguments.
Refer to h5py’s documentation for details.

• dtype (dtype or None, optional) – Patterns will be cast to dtype. If None (de-
fault), dtype will be set to the same data-type as the first pattern in patterns.

• kwargs – Keywords are passed to h5py.File constructor. Default is file-mode ‘x’,
which raises error if file already exists.

Returns dataset

Return type DiffractionDataset

See also:

open_raw() open raw datasets by guessing the appropriate format based on available plug-ins.

Raises IOError : If the filename is already associated with a file.

Important Methods for the DiffractionDataset

The following three methods are the bread-and-butter of interacting with data. See the API section for a complete
description.

2.3. Datasets in Iris 17

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None

iris, Release 5.2.1

DiffractionDataset.diff_data(timedelay, relative=False, out=None)
Returns diffraction data at a specific time-delay.

Parameters

• timdelay (float or None) – Timedelay [ps]. If None, the entire block is returned.

• relative (bool, optional) – If True, data is returned relative to the average of all
diffraction patterns before photoexcitation.

• out (ndarray or None, optional) – If an out ndarray is provided, h5py can avoid
making intermediate copies.

Returns arr – Time-delay data. If out is provided, arr is a view into out.

Return type ndarray

Raises ValueError – If timedelay does not exist.

DiffractionDataset.diff_eq()
Returns the averaged diffraction pattern for all times before photoexcitation. In case no data is available before
photoexcitation, an array of zeros is returned. The result of this function is cached to minimize overhead.

Time-zero can be adjusted using the shift_time_zero method.

Returns I – Diffracted intensity [counts]

Return type ndarray, shape (N,)

DiffractionDataset.time_series(rect, relative=False, out=None)
Integrated intensity over time inside bounds.

Parameters

• rect (4-tuple of ints) – Bounds of the region in px. Bounds are specified as [row1,
row2, col1, col2]

• relative (bool, optional) – If True, data is returned relative to the average of all
diffraction patterns before photoexcitation.

• out (ndarray or None, optional) – 1-D ndarray in which to store the results.
The shape should be compatible with (len(time_points),)

Returns out

Return type ndarray, ndim 1

See also:

time_series_selection() intensity integration using arbitrary selections.

DiffractionDataset.time_series_selection(selection, relative=False, out=None)
Integrated intensity over time according to some arbitrary selection. This is a generalization of the
DiffractionDataset.time_series method, which is much faster, but limited to rectangular selec-
tions.

New in version 5.2.1.

Parameters

• selection (skued.Selection or ndarray, dtype bool, shape (N,
M)) – A selection mask that dictates the regions to integrate in each scattering patterns.
In the case selection is an array, an ArbirarySelection will be used. Performance may be
degraded. Selection mask evaluating to True in the regions to integrate. The selection
must be the same shape as one scattering pattern (i.e. two-dimensional).

18 Chapter 2. General Documentation

https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#None

iris, Release 5.2.1

• relative (bool, optional) – If True, data is returned relative to the average of all
diffraction patterns before photoexcitation.

• out (ndarray or None, optional) – 1-D ndarray in which to store the results.
The shape should be compatible with (len(time_points),)

Returns out

Return type ndarray, ndim 1

Raises ValueError : if the shape of mask does not match the scattering patterns.

See also:

time_series() integrated intensity in a rectangle.

2.3.2 The PowderDiffractionDataset object

For polycrystalline data, we can define more data structures and methods. A PowderDiffractionDataset is a
strict subclass of a DiffractionDataset, and hence all methods previously described are also available.

Specializing a DiffractionDataset object into a PowderDiffractionDataset is done as follows:

from iris import PowderDiffractionDataset
dataset_path = 'C:\\path_do_dataset.hdf5' # DiffractionDataset already exists

with PowderDiffractionDataset.from_dataset(dataset_path, center) as dset:
Do computation

Important Methods for the PowderDiffractionDataset

The following methods are specific to polycrystalline diffraction data. See the API section for a complete description.

PowderDiffractionDataset.powder_eq()
Returns the average powder diffraction pattern for all times before photoexcitation. In case no data is available
before photoexcitation, an array of zeros is returned.

Parameters bgr (bool) – If True, background is removed.

Returns I – Diffracted intensity [counts]

Return type ndarray, shape (N,)

PowderDiffractionDataset.powder_data(timedelay, bgr=False, relative=False, out=None)
Returns the angular average data from scan-averaged diffraction patterns.

Parameters

• timdelay (float or None) – Time-delay [ps]. If None, the entire block is returned.

• bgr (bool, optional) – If True, background is removed.

• relative (bool, optional) – If True, data is returned relative to the average of all
diffraction patterns before photoexcitation.

• out (ndarray or None, optional) – If an out ndarray is provided, h5py can avoid
making intermediate copies.

Returns I – Diffracted intensity [counts]

Return type ndarray, shape (N,) or (N,M)

2.3. Datasets in Iris 19

https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#None

iris, Release 5.2.1

PowderDiffractionDataset.powder_calq(crystal, peak_indices, miller_indices)
Determine the scattering vector q corresponding to a polycrystalline diffraction pattern and a known crystal
structure.

For best results, multiple peaks (and corresponding Miller indices) should be provided; the absolute minimum
is two.

Parameters

• crystal (skued.Crystal instance) – Crystal that gave rise to the diffraction data.

• peak_indices (n-tuple of ints) – Array index location of diffraction peaks. For
best results, peaks should be well-separated. More than two peaks can be used.

• miller_indices (iterable of 3-tuples) – Indices associated with the peaks of
peak_indices. More than two peaks can be used. E.g. indices = [(2,2,0),
(-3,0,2)]

Raises

• ValueError : if the number of peak indices does not match the number of Miller indices.

• ValueError : if the number of peaks given is lower than two.

PowderDiffractionDataset.compute_baseline(first_stage, wavelet, max_iter=50, level=None,
**kwargs)

Compute and save the baseline computed based on the dual-tree complex wavelet transform. All keyword
arguments are passed to scikit-ued’s baseline_dt function.

Parameters

• first_stage (str, optional) – Wavelet to use for the first stage. See skued.
available_first_stage_filters() for a list of suitable arguments

• wavelet (str, optional) – Wavelet to use in stages > 1. Must be appropriate for
the dual-tree complex wavelet transform. See skued.available_dt_filters() for
possible values.

• max_iter (int, optional) –

• level (int or None, optional) – If None (default), maximum level is used.

2.3.3 HDF5 layout

DiffractionDataset instances (and by extension, PowderDiffractionDataset instances) are a special-
ization of HDF5 files. Therefore, it is possible to inspect and manipulate instances with any other tool that has bindings
to the HDF5 libraries. The HDF5 layout is presented below.

20 Chapter 2. General Documentation

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None

iris, Release 5.2.1

2.4 Dataset Plug-ins

To use your own raw data with iris, a plug-in functionality is made available.

Plug-ins are Python modules that implement a subclass of AbstractRawDataset, and should be
placed in ~/iris_plugins (C:\Users\UserName\iris_plugins on Windows). Subclasses of
AbstractRawDataset are automatically detected by iris and can be used via the GUI.

Installed plug-ins can be imported from iris.plugins:

from iris.plugins import DatasetSubclass

which would work if the DatasetSubclass is defined in the file ~/iris_plugins/<anything>.py. Ex-
ample plug-ins is available here. Plug-ins used by members of the Siwick research group are visible here.

2.4.1 Installing a plug-in

To install a plug-in that you have written in a file named ~/myplugin.py:

import iris
iris.install_plugin('~/myplugin.py')

Installing a plug-in in the above makes it immediately available.

install_plugin(path) Install and load an iris plug-in.

2.4. Dataset Plug-ins 21

https://github.com/LaurentRDC/iris-ued/tree/master/example_plugins
https://github.com/Siwick-Research-Group/iris-ued-plugins

iris, Release 5.2.1

iris.install_plugin

iris.install_plugin(path)
Install and load an iris plug-in. Installed plug-ins are loaded at every iris start-up.

New in version 5.0.4.

Parameters path (path-like) – Path to the plug-in. This plug-in file will be copied.

2.5 Subclassing AbstractRawDataset

To take advantage of iris’s DiffractionDataset and PowderDiffractionDataset, an appro-
priate subclass of AbstractRawDataset must be implemented. This subclass can then be fed to
DiffractionDataset.from_raw() to produce a DiffractionDataset.

2.5.1 How to assemble a AbstractRawDataset subclass

Ultrafast electron diffraction experiments typically have multiple scans. Each scan consists of a time-delay sweep. You
can think of it as one scan being an experiment, and so each dataset is composed of multiple, equivalent experiments.

To subclass AbstractRawDataset, the method AbstractRawDataset.raw_data() must minimally im-
plemented. It must follow the following specification:

AbstractRawDataset.raw_data(timedelay, scan=1, **kwargs)
Returns an array of the image at a timedelay and scan.

Parameters

• timdelay (float) – Acquisition time-delay.

• scan (int, optional) – Scan number. Default is 1.

• kwargs – Keyword-arguments are ignored.

Returns arr

Return type ~numpy.ndarray, ndim 2

Raises

• ValueError : if timedelay or scan are invalid / out of bounds.

• IOError : Filename is not associated with an image/does not exist.

For better performance, or to tailor data reduction to your data acquisition scheme, the following method can also be
overloaded:

AbstractRawDataset.reduced(exclude_scans=None, align=True, normalize=True, mask=None, pro-
cesses=1, dtype=<class ’float’>)

Generator of reduced dataset. The reduced diffraction patterns are generated in order of time-delay.

This particular implementation normalizes diffracted intensity of pictures acquired at the same time-delay while
rejecting masked pixels.

Parameters

• exclude_scans (iterable or None, optional) – These scans will be skipped
when reducing the dataset.

22 Chapter 2. General Documentation

https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None

iris, Release 5.2.1

• align (bool, optional) – If True (default), raw diffraction patterns will be aligned
using the masked normalized cross-correlation approach. See skued.align for more infor-
mation.

• normalize (bool, optional) – If True (default), equivalent diffraction pictures (e.g.
same time-delay, different scans) are normalized to the same diffracted intensity.

• mask (array-like of bool or None, optional) – If not None, pixels where
mask = True are ignored for certain operations (e.g. alignment).

• processes (int or None, optional) – Number of Processes to spawn for pro-
cessing.

• dtype (numpy.dtype or None, optional) – Reduced patterns will be cast to
dtype.

Yields pattern (~numpy.ndarray, ndim 2)

2.5.2 AbstractRawDataset metadata

AbstractRawDataset subclasses automatically include the following metadata:

• date (str): Acquisition date. Date format is up to you.

• energy (float): Electron energy in keV.

• pump_wavelength (int): photoexcitation wavelength in nanometers.

• fluence (float): photoexcitation fluence mJ/cm * *2.

• time_zero_shift (float): Time-zero shift in picoseconds.

• temperature (float): sample temperature in Kelvins.

• exposure (float): picture exposure in seconds.

• resolution (2-tuple): pixel resolution of pictures.

• time_points (tuple): time-points in picoseconds.

• scans (tuple): experimental scans.

• camera_length (float): sample-to-camera distance in meters.

• pixel_width (float): pixel width in meters.

• notes (str): notes.

Subclasses can add more metadata or override the current metadata with new defaults.

All proper subclasses of AbstractRawDataset are automatically added to the possible raw dataset formats that
can be loaded from the GUI.

2.6 Reference/API

2.6.1 Opening raw datasets

To open any raw dataset, take a look at the open_raw() function.

2.6. Reference/API 23

https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None

iris, Release 5.2.1

iris.open_raw(path)
Open a raw data item, guessing the AbstractRawDataset instance that should be used based on available plug-ins.

This function can also be used as a context manager:

with open_raw('.') as dset:
...

Parameters path (path-like) – Path to the file/folder containing the raw data.

Returns raw – The raw dataset. If no format could be guessed, an RuntimeError is raised.

Return type AbstractRawDataset instance

Raises RuntimeError : if the data format could not be guessed.

2.6.2 Raw Dataset Classes

AbstractRawDataset([source, metadata]) Abstract base class for ultrafast electron diffraction data
set.

iris.AbstractRawDataset

class iris.AbstractRawDataset(source=None, metadata=None)
Abstract base class for ultrafast electron diffraction data set. AbstractRawDataset allows for enforced metadata
types and values, as well as a standard interface. For example, AbstractRawDataset implements the context
manager interface.

Minimally, the following method must be implemented in subclasses:

• raw_data

It is suggested to also implement the following magic method:

• __init__

• __exit__

Optionally, the display_name class attribute can be specified.

For better results or performance during reduction, the following methods can be specialized:

• reduced

A list of concrete implementations of AbstractRawDatasets is available in the implementations class at-
tribute. Subclasses are automatically added.

The call signature must remain the same for all overwritten methods.

Parameters

• source (object) – Data source, for example a directory or external file.

• metadata (dict or None, optional) – Metadata and experimental parameters.
Dictionary keys that are not valid metadata, they are ignored. Metadata can also be set
directly later.

Raises TypeError : if an item from the metadata has an unexpected type.

__init__(source=None, metadata=None)

Parameters

24 Chapter 2. General Documentation

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None

iris, Release 5.2.1

• source (object) – Data source, for example a directory or external file.

• metadata (dict or None, optional) – Metadata and experimental parameters.
Dictionary keys that are not valid metadata, they are ignored. Metadata can also be set
directly later.

Raises TypeError : if an item from the metadata has an unexpected type.

Methods

__init__([source, metadata])
param source Data source, for example

a directory or external file.

iterscan(scan, **kwargs) Generator function of diffraction patterns as part of a
scan, in time-delay order.

raw_data(timedelay[, scan]) Returns an array of the image at a timedelay and
scan.

reduced([exclude_scans, align, normalize, . . .]) Generator of reduced dataset.
update_metadata(metadata) Update metadata from a dictionary.

__exit__(*exc)
Raise any exception triggered within the runtime context.

__init__(source=None, metadata=None)

Parameters

• source (object) – Data source, for example a directory or external file.

• metadata (dict or None, optional) – Metadata and experimental parameters.
Dictionary keys that are not valid metadata, they are ignored. Metadata can also be set
directly later.

Raises TypeError : if an item from the metadata has an unexpected type.

__repr__()
Return repr(self).

iterscan(scan, **kwargs)
Generator function of diffraction patterns as part of a scan, in time-delay order.

Parameters

• scan (int) – Scan from which to yield the data.

• kwargs – Keyword-arguments are passed to raw_data method.

Yields data (~numpy.ndarray, ndim 2)

See also:

itertime() generator of diffraction patterns for a single time-delay, in scan order

itertime(timedelay, exclude_scans=None, **kwargs)
Generator function of diffraction patterns of the same time-delay, in scan order.

Parameters

• timedelay (float) –

2.6. Reference/API 25

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float

iris, Release 5.2.1

• from which to yield the data. (Scan) –

exclude_scans [iterable or None, optional] These scans will be skipped.

kwargs Keyword-arguments are passed to raw_data method.

Yields data (~numpy.ndarray, ndim 2)

See also:

iterscan() generator of diffraction patterns for a single scan, in time-delay order

metadata
Experimental parameters and dataset metadata as a dictionary.

raw_data(timedelay, scan=1, **kwargs)
Returns an array of the image at a timedelay and scan.

Parameters

• timdelay (float) – Acquisition time-delay.

• scan (int, optional) – Scan number. Default is 1.

• kwargs – Keyword-arguments are ignored.

Returns arr

Return type ~numpy.ndarray, ndim 2

Raises

• ValueError : if timedelay or scan are invalid / out of bounds.

• IOError : Filename is not associated with an image/does not exist.

reduced(exclude_scans=None, align=True, normalize=True, mask=None, processes=1, dtype=<class
’float’>)

Generator of reduced dataset. The reduced diffraction patterns are generated in order of time-delay.

This particular implementation normalizes diffracted intensity of pictures acquired at the same time-delay
while rejecting masked pixels.

Parameters

• exclude_scans (iterable or None, optional) – These scans will be
skipped when reducing the dataset.

• align (bool, optional) – If True (default), raw diffraction patterns will be aligned
using the masked normalized cross-correlation approach. See skued.align for more infor-
mation.

• normalize (bool, optional) – If True (default), equivalent diffraction pictures
(e.g. same time-delay, different scans) are normalized to the same diffracted intensity.

• mask (array-like of bool or None, optional) – If not None, pixels where
mask = True are ignored for certain operations (e.g. alignment).

• processes (int or None, optional) – Number of Processes to spawn for pro-
cessing.

• dtype (numpy.dtype or None, optional) – Reduced patterns will be cast to
dtype.

Yields pattern (~numpy.ndarray, ndim 2)

26 Chapter 2. General Documentation

https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None

iris, Release 5.2.1

update_metadata(metadata)
Update metadata from a dictionary. Only appropriate keys are used; irrelevant keys are ignored.

Parameters metadata (dictionary) – See AbstractRawDataset.
valid_metadata for valid keys.

2.6.3 Diffraction Dataset Classes

DiffractionDataset(name[, mode, driver, . . .]) Abstraction of an HDF5 file to represent diffraction
datasets.

PowderDiffractionDataset(*args, **kwargs) Abstraction of HDF5 files for powder diffraction
datasets.

iris.DiffractionDataset

class iris.DiffractionDataset(name, mode=None, driver=None, libver=None,
userblock_size=None, swmr=False, rdcc_nslots=None,
rdcc_nbytes=None, rdcc_w0=None, track_order=None, **kwds)

Abstraction of an HDF5 file to represent diffraction datasets.

Create a new file object.

See the h5py user guide for a detailed explanation of the options.

name Name of the file on disk, or file-like object. Note: for files created with the ‘core’ driver, HDF5 still
requires this be non-empty.

mode r Readonly, file must exist r+ Read/write, file must exist w Create file, truncate if exists w- or x Create
file, fail if exists a Read/write if exists, create otherwise (default)

driver Name of the driver to use. Legal values are None (default, recommended), ‘core’, ‘sec2’, ‘stdio’, ‘mpio’.

libver Library version bounds. Supported values: ‘earliest’, ‘v108’, ‘v110’, and ‘latest’. The ‘v108’ and ‘v110’
options can only be specified with the HDF5 1.10.2 library or later.

userblock Desired size of user block. Only allowed when creating a new file (mode w, w- or x).

swmr Open the file in SWMR read mode. Only used when mode = ‘r’.

rdcc_nbytes Total size of the raw data chunk cache in bytes. The default size is 1024**2 (1 MB) per dataset.

rdcc_w0 The chunk preemption policy for all datasets. This must be between 0 and 1 inclusive and indicates
the weighting according to which chunks which have been fully read or written are penalized when de-
termining which chunks to flush from cache. A value of 0 means fully read or written chunks are treated
no differently than other chunks (the preemption is strictly LRU) while a value of 1 means fully read or
written chunks are always preempted before other chunks. If your application only reads or writes data
once, this can be safely set to 1. Otherwise, this should be set lower depending on how often you re-read
or re-write the same data. The default value is 0.75.

rdcc_nslots The number of chunk slots in the raw data chunk cache for this file. Increasing this value reduces
the number of cache collisions, but slightly increases the memory used. Due to the hashing strategy, this
value should ideally be a prime number. As a rule of thumb, this value should be at least 10 times the
number of chunks that can fit in rdcc_nbytes bytes. For maximum performance, this value should be set
approximately 100 times that number of chunks. The default value is 521.

track_order Track dataset/group/attribute creation order under root group if True. If None use global default
h5.get_config().track_order.

Additional keywords Passed on to the selected file driver.

2.6. Reference/API 27

iris, Release 5.2.1

__init__(name, mode=None, driver=None, libver=None, userblock_size=None, swmr=False,
rdcc_nslots=None, rdcc_nbytes=None, rdcc_w0=None, track_order=None, **kwds)

Create a new file object.

See the h5py user guide for a detailed explanation of the options.

name Name of the file on disk, or file-like object. Note: for files created with the ‘core’ driver, HDF5 still
requires this be non-empty.

mode r Readonly, file must exist r+ Read/write, file must exist w Create file, truncate if exists w- or x
Create file, fail if exists a Read/write if exists, create otherwise (default)

driver Name of the driver to use. Legal values are None (default, recommended), ‘core’, ‘sec2’, ‘stdio’,
‘mpio’.

libver Library version bounds. Supported values: ‘earliest’, ‘v108’, ‘v110’, and ‘latest’. The ‘v108’ and
‘v110’ options can only be specified with the HDF5 1.10.2 library or later.

userblock Desired size of user block. Only allowed when creating a new file (mode w, w- or x).

swmr Open the file in SWMR read mode. Only used when mode = ‘r’.

rdcc_nbytes Total size of the raw data chunk cache in bytes. The default size is 1024**2 (1 MB) per
dataset.

rdcc_w0 The chunk preemption policy for all datasets. This must be between 0 and 1 inclusive and
indicates the weighting according to which chunks which have been fully read or written are penalized
when determining which chunks to flush from cache. A value of 0 means fully read or written chunks
are treated no differently than other chunks (the preemption is strictly LRU) while a value of 1 means
fully read or written chunks are always preempted before other chunks. If your application only reads
or writes data once, this can be safely set to 1. Otherwise, this should be set lower depending on how
often you re-read or re-write the same data. The default value is 0.75.

rdcc_nslots The number of chunk slots in the raw data chunk cache for this file. Increasing this value
reduces the number of cache collisions, but slightly increases the memory used. Due to the hashing
strategy, this value should ideally be a prime number. As a rule of thumb, this value should be at least
10 times the number of chunks that can fit in rdcc_nbytes bytes. For maximum performance, this
value should be set approximately 100 times that number of chunks. The default value is 521.

track_order Track dataset/group/attribute creation order under root group if True. If None use global
default h5.get_config().track_order.

Additional keywords Passed on to the selected file driver.

__repr__()
Return repr(self).

compression_params
Compression options in the form of a dictionary

diff_apply(func, callback=None, processes=1)
Apply a function to each diffraction pattern possibly in parallel. The diffraction patterns will be modified
in-place.

Warning: This is an irreversible in-place operation.

New in version 5.0.3.

Parameters

28 Chapter 2. General Documentation

iris, Release 5.2.1

• func (callable) – Function that takes in an array (diffraction pattern) and returns an
array of the exact same shape, with the same data-type.

• callback (callable or None, optional) – Callable that takes an int between
0 and 99. This can be used for progress update.

• processes (int or None, optional) – Number of parallel processes to use. If
None, all available processes will be used. In case Single Writer Multiple Reader mode is
not available, processes is ignored.

New in version 5.0.6.

Raises TypeError : if func is not a proper callable

diff_data(timedelay, relative=False, out=None)
Returns diffraction data at a specific time-delay.

Parameters

• timdelay (float or None) – Timedelay [ps]. If None, the entire block is returned.

• relative (bool, optional) – If True, data is returned relative to the average of all
diffraction patterns before photoexcitation.

• out (ndarray or None, optional) – If an out ndarray is provided, h5py can
avoid making intermediate copies.

Returns arr – Time-delay data. If out is provided, arr is a view into out.

Return type ndarray

Raises ValueError – If timedelay does not exist.

diff_eq
Returns the averaged diffraction pattern for all times before photoexcitation. In case no data is available
before photoexcitation, an array of zeros is returned. The result of this function is cached to minimize
overhead.

Time-zero can be adjusted using the shift_time_zero method.

Returns I – Diffracted intensity [counts]

Return type ndarray, shape (N,)

classmethod from_collection(patterns, filename, time_points, metadata, valid_mask=None,
dtype=None, ckwargs=None, callback=None, **kwargs)

Create a DiffractionDataset from a collection of diffraction patterns and metadata.

Parameters

• patterns (iterable of ndarray or ndarray) – Diffraction patterns. These
should be in the same order as time_points. Note that the iterable can be a generator,
in which case it will be consumed.

• filename (str or path-like) – Path to the assembled DiffractionDataset.

• time_points (array_like, shape (N,)) – Time-points of the diffraction pat-
terns, in picoseconds.

• metadata (dict) – Valid keys are contained in DiffractionDataset.
valid_metadata.

• valid_mask (ndarray or None, optional) – Boolean array that evaluates to
True on valid pixels. This information is useful in cases where a beamblock is used.

2.6. Reference/API 29

https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None

iris, Release 5.2.1

• dtype (dtype or None, optional) – Patterns will be cast to dtype. If None
(default), dtype will be set to the same data-type as the first pattern in patterns.

• ckwargs (dict, optional) – HDF5 compression keyword arguments. Refer to
h5py’s documentation for details. Default is to use the lzf compression pipeline.

• callback (callable or None, optional) – Callable that takes an int between
0 and 99. This can be used for progress update when patterns is a generator and
involves large computations.

• kwargs – Keywords are passed to h5py.File constructor. Default is file-mode ‘x’,
which raises error if file already exists. Default libver is ‘latest’.

Returns dataset

Return type DiffractionDataset

classmethod from_raw(raw, filename, exclude_scans=None, valid_mask=None, processes=1,
callback=None, align=True, normalize=True, ckwargs=None,
dtype=None, **kwargs)

Create a DiffractionDataset from a subclass of AbstractRawDataset.

Parameters

• raw (AbstractRawDataset instance) – Raw dataset instance.

• filename (str or path-like) – Path to the assembled DiffractionDataset.

• exclude_scans (iterable of ints or None, optional) – Scans to ex-
clude from the processing. Default is to include all scans.

• valid_mask (ndarray or None, optional) – Boolean array that evaluates to
True on valid pixels. This information is useful in cases where a beamblock is used.

• processes (int or None, optional) – Number of Processes to spawn for pro-
cessing. Default is number of available CPU cores.

• callback (callable or None, optional) – Callable that takes an int between
0 and 99. This can be used for progress update.

• align (bool, optional) – If True (default), raw images will be aligned on a per-
scan basis.

• normalize (bool, optional) – If True, images within a scan are normalized to the
same integrated diffracted intensity.

• ckwargs (dict or None, optional) – HDF5 compression keyword arguments.
Refer to h5py’s documentation for details.

• dtype (dtype or None, optional) – Patterns will be cast to dtype. If None
(default), dtype will be set to the same data-type as the first pattern in patterns.

• kwargs – Keywords are passed to h5py.File constructor. Default is file-mode ‘x’,
which raises error if file already exists.

Returns dataset

Return type DiffractionDataset

See also:

open_raw() open raw datasets by guessing the appropriate format based on available plug-ins.

Raises IOError : If the filename is already associated with a file.

30 Chapter 2. General Documentation

https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None

iris, Release 5.2.1

invalid_mask
Array that evaluates to True on invalid pixels (i.e. on beam-block, hot pixels, etc.)

metadata
Dictionary of the dataset’s metadata. Dictionary is sorted alphabetically by keys.

resolution
Resolution of diffraction patterns (px, px)

shift_time_zero(shift)
Insert a shift in time points. Reset the shift by setting it to zero. Shifts are not consecutive, so that calling
shift_time_zero(20) twice will not result in a shift of 40ps.

Parameters shift (float) – Shift [ps]. A positive value of shift will move all time-points
forward in time, whereas a negative value of shift will move all time-points backwards in
time.

symmetrize(mod, center, kernel_size=None, callback=None, processes=1)
Symmetrize diffraction images based on n-fold rotational symmetry.

Warning: This is an irreversible in-place operation.

Parameters

• mod (int) – Fold symmetry number.

• center (array-like, shape (2,) or None) – Coordinates of the center (in
pixels). If None, the data is symmetrized around the center of the images.

• kernel_size (float or None, optional) – If not None, every diffraction pat-
tern will be smoothed with a gaussian kernel. kernel_size is the standard deviation of the
gaussian kernel in units of pixels.

• callback (callable or None, optional) – Callable that takes an int between
0 and 99. This can be used for progress update.

• processes (int or None, optional) – Number of parallel processes to use. If
None, all available processes will be used. In case Single Writer Multiple Reader mode is
not available, processes is ignored.

New in version 5.0.6.

Raises ValueError: if mod is not a divisor of 360.

See also:

diff_apply() apply an operation to each diffraction pattern one-by-one

time_series(rect, relative=False, out=None)
Integrated intensity over time inside bounds.

Parameters

• rect (4-tuple of ints) – Bounds of the region in px. Bounds are specified as
[row1, row2, col1, col2]

• relative (bool, optional) – If True, data is returned relative to the average of all
diffraction patterns before photoexcitation.

2.6. Reference/API 31

https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool

iris, Release 5.2.1

• out (ndarray or None, optional) – 1-D ndarray in which to store the results.
The shape should be compatible with (len(time_points),)

Returns out

Return type ndarray, ndim 1

See also:

time_series_selection() intensity integration using arbitrary selections.

time_series_selection(selection, relative=False, out=None)
Integrated intensity over time according to some arbitrary selection. This is a generalization of the
DiffractionDataset.time_series method, which is much faster, but limited to rectangular se-
lections.

New in version 5.2.1.

Parameters

• selection (skued.Selection or ndarray, dtype bool, shape (N,
M)) – A selection mask that dictates the regions to integrate in each scattering patterns.
In the case selection is an array, an ArbirarySelection will be used. Performance may be
degraded. Selection mask evaluating to True in the regions to integrate. The selection
must be the same shape as one scattering pattern (i.e. two-dimensional).

• relative (bool, optional) – If True, data is returned relative to the average of all
diffraction patterns before photoexcitation.

• out (ndarray or None, optional) – 1-D ndarray in which to store the results.
The shape should be compatible with (len(time_points),)

Returns out

Return type ndarray, ndim 1

Raises ValueError : if the shape of mask does not match the scattering patterns.

See also:

time_series() integrated intensity in a rectangle.

valid_mask
Array that evaluates to True on valid pixels (i.e. not on beam-block, not hot pixels, etc.)

iris.PowderDiffractionDataset

class iris.PowderDiffractionDataset(*args, **kwargs)
Abstraction of HDF5 files for powder diffraction datasets.

__init__(*args, **kwargs)
Create a new file object.

See the h5py user guide for a detailed explanation of the options.

name Name of the file on disk, or file-like object. Note: for files created with the ‘core’ driver, HDF5 still
requires this be non-empty.

mode r Readonly, file must exist r+ Read/write, file must exist w Create file, truncate if exists w- or x
Create file, fail if exists a Read/write if exists, create otherwise (default)

32 Chapter 2. General Documentation

https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#None

iris, Release 5.2.1

driver Name of the driver to use. Legal values are None (default, recommended), ‘core’, ‘sec2’, ‘stdio’,
‘mpio’.

libver Library version bounds. Supported values: ‘earliest’, ‘v108’, ‘v110’, and ‘latest’. The ‘v108’ and
‘v110’ options can only be specified with the HDF5 1.10.2 library or later.

userblock Desired size of user block. Only allowed when creating a new file (mode w, w- or x).

swmr Open the file in SWMR read mode. Only used when mode = ‘r’.

rdcc_nbytes Total size of the raw data chunk cache in bytes. The default size is 1024**2 (1 MB) per
dataset.

rdcc_w0 The chunk preemption policy for all datasets. This must be between 0 and 1 inclusive and
indicates the weighting according to which chunks which have been fully read or written are penalized
when determining which chunks to flush from cache. A value of 0 means fully read or written chunks
are treated no differently than other chunks (the preemption is strictly LRU) while a value of 1 means
fully read or written chunks are always preempted before other chunks. If your application only reads
or writes data once, this can be safely set to 1. Otherwise, this should be set lower depending on how
often you re-read or re-write the same data. The default value is 0.75.

rdcc_nslots The number of chunk slots in the raw data chunk cache for this file. Increasing this value
reduces the number of cache collisions, but slightly increases the memory used. Due to the hashing
strategy, this value should ideally be a prime number. As a rule of thumb, this value should be at least
10 times the number of chunks that can fit in rdcc_nbytes bytes. For maximum performance, this
value should be set approximately 100 times that number of chunks. The default value is 521.

track_order Track dataset/group/attribute creation order under root group if True. If None use global
default h5.get_config().track_order.

Additional keywords Passed on to the selected file driver.

__init__(*args, **kwargs)
Create a new file object.

See the h5py user guide for a detailed explanation of the options.

name Name of the file on disk, or file-like object. Note: for files created with the ‘core’ driver, HDF5 still
requires this be non-empty.

mode r Readonly, file must exist r+ Read/write, file must exist w Create file, truncate if exists w- or x
Create file, fail if exists a Read/write if exists, create otherwise (default)

driver Name of the driver to use. Legal values are None (default, recommended), ‘core’, ‘sec2’, ‘stdio’,
‘mpio’.

libver Library version bounds. Supported values: ‘earliest’, ‘v108’, ‘v110’, and ‘latest’. The ‘v108’ and
‘v110’ options can only be specified with the HDF5 1.10.2 library or later.

userblock Desired size of user block. Only allowed when creating a new file (mode w, w- or x).

swmr Open the file in SWMR read mode. Only used when mode = ‘r’.

rdcc_nbytes Total size of the raw data chunk cache in bytes. The default size is 1024**2 (1 MB) per
dataset.

rdcc_w0 The chunk preemption policy for all datasets. This must be between 0 and 1 inclusive and
indicates the weighting according to which chunks which have been fully read or written are penalized
when determining which chunks to flush from cache. A value of 0 means fully read or written chunks
are treated no differently than other chunks (the preemption is strictly LRU) while a value of 1 means
fully read or written chunks are always preempted before other chunks. If your application only reads
or writes data once, this can be safely set to 1. Otherwise, this should be set lower depending on how
often you re-read or re-write the same data. The default value is 0.75.

2.6. Reference/API 33

iris, Release 5.2.1

rdcc_nslots The number of chunk slots in the raw data chunk cache for this file. Increasing this value
reduces the number of cache collisions, but slightly increases the memory used. Due to the hashing
strategy, this value should ideally be a prime number. As a rule of thumb, this value should be at least
10 times the number of chunks that can fit in rdcc_nbytes bytes. For maximum performance, this
value should be set approximately 100 times that number of chunks. The default value is 521.

track_order Track dataset/group/attribute creation order under root group if True. If None use global
default h5.get_config().track_order.

Additional keywords Passed on to the selected file driver.

compute_angular_averages(center=None, normalized=False, angular_bounds=None,
trim=True, callback=None)

Compute the angular averages.

Parameters

• center (2-tuple or None, optional) – Center of the diffraction patterns. If
None (default), the dataset attribute will be used instead.

• normalized (bool, optional) – If True, each pattern is normalized to its integral.

• angular_bounds (2-tuple of float or None, optional) – Angle
bounds are specified in degrees. 0 degrees is defined as the positive x-axis. Angle bounds
outside [0, 360) are mapped back to [0, 360).

• trim (bool, optional) – If True, leading/trailing zeros - possibly due to masks - are
trimmed.

• callback (callable or None, optional) – Callable of a single argument, to
which the calculation progress will be passed as an integer between 0 and 100.

compute_baseline(first_stage, wavelet, max_iter=50, level=None, **kwargs)
Compute and save the baseline computed based on the dual-tree complex wavelet transform. All keyword
arguments are passed to scikit-ued’s baseline_dt function.

Parameters

• first_stage (str, optional) – Wavelet to use for the first stage. See skued.
available_first_stage_filters() for a list of suitable arguments

• wavelet (str, optional) – Wavelet to use in stages > 1. Must be appropriate for
the dual-tree complex wavelet transform. See skued.available_dt_filters()
for possible values.

• max_iter (int, optional) –

• level (int or None, optional) – If None (default), maximum level is used.

classmethod from_dataset(dataset, center, normalized=True, angular_bounds=None, call-
back=None)

Transform a DiffractionDataset instance into a PowderDiffractionDataset. This requires computing the
azimuthal averages as well.

Parameters

• dataset (DiffractionDataset) – DiffractionDataset instance.

• center (2-tuple or None, optional) – Center of the diffraction patterns. If
None (default), the dataset attribute will be used instead.

• normalized (bool, optional) – If True, each pattern is normalized to its integral.
Default is False.

34 Chapter 2. General Documentation

https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool

iris, Release 5.2.1

• angular_bounds (2-tuple of float or None, optional) – Angle
bounds are specified in degrees. 0 degrees is defined as the positive x-axis. Angle bounds
outside [0, 360) are mapped back to [0, 360).

• callback (callable or None, optional) – Callable of a single argument, to
which the calculation progress will be passed as an integer between 0 and 100.

Returns powder

Return type PowderDiffractionDataset

powder_baseline(timedelay, out=None)
Returns the baseline data.

Parameters

• timdelay (float or None) – Time-delay [ps]. If None, the entire block is returned.

• out (ndarray or None, optional) – If an out ndarray is provided, h5py can
avoid making intermediate copies.

Returns out – If a baseline hasn’t been computed yet, the returned array is an array of zeros.

Return type ndarray

powder_calq(crystal, peak_indices, miller_indices)
Determine the scattering vector q corresponding to a polycrystalline diffraction pattern and a known crystal
structure.

For best results, multiple peaks (and corresponding Miller indices) should be provided; the absolute mini-
mum is two.

Parameters

• crystal (skued.Crystal instance) – Crystal that gave rise to the diffraction
data.

• peak_indices (n-tuple of ints) – Array index location of diffraction peaks.
For best results, peaks should be well-separated. More than two peaks can be used.

• miller_indices (iterable of 3-tuples) – Indices associated with the peaks
of peak_indices. More than two peaks can be used. E.g. indices = [(2,2,0),
(-3,0,2)]

Raises

• ValueError : if the number of peak indices does not match the number of Miller indices.

• ValueError : if the number of peaks given is lower than two.

powder_data(timedelay, bgr=False, relative=False, out=None)
Returns the angular average data from scan-averaged diffraction patterns.

Parameters

• timdelay (float or None) – Time-delay [ps]. If None, the entire block is returned.

• bgr (bool, optional) – If True, background is removed.

• relative (bool, optional) – If True, data is returned relative to the average of all
diffraction patterns before photoexcitation.

• out (ndarray or None, optional) – If an out ndarray is provided, h5py can
avoid making intermediate copies.

Returns I – Diffracted intensity [counts]

2.6. Reference/API 35

https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#None

iris, Release 5.2.1

Return type ndarray, shape (N,) or (N,M)

powder_eq
Returns the average powder diffraction pattern for all times before photoexcitation. In case no data is
available before photoexcitation, an array of zeros is returned.

Parameters bgr (bool) – If True, background is removed.

Returns I – Diffracted intensity [counts]

Return type ndarray, shape (N,)

powder_time_series(rmin, rmax, bgr=False, relative=False, units=’pixels’, out=None)
Average intensity over time. Diffracted intensity is integrated in the closed interval [rmin, rmax]

Parameters

• rmin (float) – Lower scattering vector bound [1/A]

• rmax (float) – Higher scattering vector bound [1/A].

• bgr (bool, optional) – If True, background is removed. Default is False.

• relative (bool, optional) – If True, data is returned relative to the average of all
diffraction patterns before photoexcitation.

• units (str, {'pixels', 'momentum'}) – Units of the bounds rmin and rmax.

• out (ndarray or None, optional) – 1-D ndarray in which to store the results.
The shape should be compatible with (len(time_points),)

Returns out – Average diffracted intensity over time.

Return type ndarray, shape (N,)

px_radius
Pixel-radius of azimuthal average

scattering_vector
Array of scattering vector norm |𝑞| [1/]

shift_time_zero(*args, **kwargs)
Shift time-zero uniformly across time-points.

Parameters shift (float) – Shift [ps]. A positive value of shift will move all time-points
forward in time, whereas a negative value of shift will move all time-points backwards in
time.

2.7 What’s new

2.7.1 5.2.1

• Added the DiffractionDataset.time_series_selection method, which allows to create time-series integrated
across an arbitrary momentum-space selection mask. This allows to create time-series from shapes that are
not rectangular, at the expense of performance.

• Added a few methods to create selection masks: DiffractionDataset.selection_rect, Diffraction-
Dataset.selection_disk, and DiffractionDataset.selection_ring.

• Added the ability to show/hide dataset control bar;

• Added the ability to export time-series data in CSV format;

36 Chapter 2. General Documentation

https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#float

iris, Release 5.2.1

• Fixed an issue where calculations of time-series, relative to pre-time-zero, would raise an error.

• Symmetrization dialog is no longer in “beta”.

2.7.2 5.2.0

• Official support for Linux.

• Plug-ins installed via the GUI can now be used right away. No restarts required.

• Added the iris.plugins.load_plugin function to load plug-ins without installing them. Useful for testing.

• Plug-ins can now have the display_name property which will be displayed in the GUI. This is optional and
backwards-compatible.

• Siwick Research Group-specific plugins were removed. They can be found here: https://github.com/
Siwick-Research-Group/iris-ued-plugins

• Switched to Azure Pipelines for continuous integration builds;

• Added cursor information (position and image value) for processed data view;

• Fixed an issue where very large relative differences in datasets would crash the GUI displays;

• Fixed an issue where time-series fit would not display properly in fractional change mode;

2.7.3 5.1.3

• Added logging support for the GUI component. Logs can be reached via the help menu

• Added an update check. You can see whether an update is available via the help menu, as well as via the status
bar.

• Added the ability to view time-series dynamics in absolute units AND relative change.

• Pinned dependency to scikit-ued, to prevent upgrade to scikit-ued 2.0 unless appropriate.

• Pinned dependency to npstreams, to prevent upgrade to npstreams 2.0 unless appropriate.

2.7.4 5.1.2

• Fixed an issue where the QDarkStyle internal imports were absolute.

2.7.5 5.1.1

• Fixed an issue where data reduction would freeze when using more than one CPU;

• Removed the auto-update mechanism. Update checks will run in the background only;

• Fixed an issue where the in-progress indicator would freeze;

• Moved tests outside of source repository;

• Updated GUI stylesheet to QDarkStyle 2.6.6;

2.7. What’s new 37

https://github.com/Siwick-Research-Group/iris-ued-plugins
https://github.com/Siwick-Research-Group/iris-ued-plugins

iris, Release 5.2.1

2.7.6 5.1.0

• Added explicit support for Python 3.7;

• Usability tweaks, for example more visible mask controls;

• Added the ability to create standalone executables via PyInstaller;

• Added the ability to create Windows installers;

2.7.7 5.0.5.1

• Due to new forced image orientation, objects on screens were not properly registered (e.g. diffraction center
finder).

2.7.8 5.0.5

• Added the ability to fit exponentials to time-series;

• Added region-of-interest text bounds for easier time-series exploration

• Enforced PyQtGraph to use row-major image orientation

• Datasets are now opened in read-only mode unless absolutely necessary. This should make it safer to handler
multiple instances of iris at the same time.

2.7.9 5.0.4

• Better plug-in handling and command-line interface.

2.7.10 5.0.3

The major change in this version is the ability to guess raw dataset formats using the iris.open_raw function. This
allows the possibility to start the GUI and open a dataset at the same time.

2.7.11 5.0.2

The package now only has dependencies that can be installed through conda

2.7.12 5.0.1

This is a minor bug-fix release that also includes user interface niceties (e.g. link to online documentation) and user
experience niceties (e.g. confirmation message if you forget pixel masks).

2.7.13 5.0.0

This new version includes a completely rewritten library and GUI front-end. Earlier datasets will need to be re-
processed. New features:

• Faster performance thanks to better data layout in HDF5;

• Plug-in architecture for various raw data formats;

38 Chapter 2. General Documentation

iris, Release 5.2.1

• Faster performance thanks to npstreams package;

• Easier to extend GUI skeleton;

• Online documentation accessible from the GUI;

• Continuous integration.

2.7. What’s new 39

iris, Release 5.2.1

40 Chapter 2. General Documentation

CHAPTER 3

Authors

• Laurent P. René de Cotret (McGill)

41

iris, Release 5.2.1

42 Chapter 3. Authors

Index

Symbols
__exit__() (iris.AbstractRawDataset method), 25
__init__() (iris.AbstractRawDataset method), 24, 25
__init__() (iris.DiffractionDataset method), 27
__init__() (iris.PowderDiffractionDataset method),

32, 33
__repr__() (iris.AbstractRawDataset method), 25
__repr__() (iris.DiffractionDataset method), 28

A
AbstractRawDataset (class in iris), 24

C
compression_params (iris.DiffractionDataset at-

tribute), 28
compute_angular_averages()

(iris.PowderDiffractionDataset method),
34

compute_baseline()
(iris.PowderDiffractionDataset method),
34

D
diff_apply() (iris.DiffractionDataset method), 28
diff_data() (iris.DiffractionDataset method), 29
diff_eq (iris.DiffractionDataset attribute), 29
DiffractionDataset (class in iris), 27

F
from_collection() (iris.DiffractionDataset class

method), 29
from_dataset() (iris.PowderDiffractionDataset

class method), 34
from_raw() (iris.DiffractionDataset class method),

17, 30

I
install_plugin() (in module iris), 22
invalid_mask (iris.DiffractionDataset attribute), 30

iterscan() (iris.AbstractRawDataset method), 25
itertime() (iris.AbstractRawDataset method), 25

M
metadata (iris.AbstractRawDataset attribute), 26
metadata (iris.DiffractionDataset attribute), 31

O
open_raw() (in module iris), 23

P
powder_baseline() (iris.PowderDiffractionDataset

method), 35
powder_calq() (iris.PowderDiffractionDataset

method), 35
powder_data() (iris.PowderDiffractionDataset

method), 35
powder_eq (iris.PowderDiffractionDataset attribute),

36
powder_time_series()

(iris.PowderDiffractionDataset method),
36

PowderDiffractionDataset (class in iris), 32
px_radius (iris.PowderDiffractionDataset attribute),

36

R
raw_data() (iris.AbstractRawDataset method), 22, 26
reduced() (iris.AbstractRawDataset method), 22, 26
resolution (iris.DiffractionDataset attribute), 31

S
scattering_vector (iris.PowderDiffractionDataset

attribute), 36
shift_time_zero() (iris.DiffractionDataset

method), 31
shift_time_zero() (iris.PowderDiffractionDataset

method), 36
symmetrize() (iris.DiffractionDataset method), 31

43

iris, Release 5.2.1

T
time_series() (iris.DiffractionDataset method), 31
time_series_selection()

(iris.DiffractionDataset method), 32

U
update_metadata() (iris.AbstractRawDataset

method), 27

V
valid_mask (iris.DiffractionDataset attribute), 32

44 Index

	Links
	General Documentation
	Installation
	Using iris: typical workflow
	Datasets in Iris
	Dataset Plug-ins
	Subclassing AbstractRawDataset
	Reference/API
	What’s new

	Authors
	Index

