

iris: Ultrafast electron diffraction data exploration

iris is both a library for interacting with ultrafast electron diffraction
data, as well as a GUI frontend to interactively explore this data.

The code presented herein has been in use at some point by the
Siwick research group [http://www.physics.mcgill.ca/siwicklab].

[image: _images/iris_screen.png]

Links

	Source code [https://github.com/LaurentRDC/iris-ued]

	Issues [https://github.com/LaurentRDC/iris-ued/issues]

General Documentation

	Installation
	Standalone Installation

	Installing the Python Package

	Test data

	Testing

	Using iris: typical workflow
	Before you start

	Startup

	Loading raw data

	Data reduction

	Data exploration

	Polycrystalline data exploration

	Polycrystalline scattering vector calibration

	Datasets in Iris
	The DiffractionDataset object

	The PowderDiffractionDataset object

	HDF5 layout

	Dataset Plug-ins
	Installing a plug-in

	Subclassing AbstractRawDataset
	How to assemble a AbstractRawDataset subclass

	AbstractRawDataset metadata

	Reference/API
	Opening raw datasets

	Raw Dataset Classes

	Diffraction Dataset Classes

	What’s new
	5.2.0 (development)

	5.1.3

	5.1.2

	5.1.1

	5.1.0

	5.0.5.1

	5.0.5

	5.0.4

	5.0.3

	5.0.2

	5.0.1

	5.0.0

Authors

	Laurent P. René de Cotret (McGill)

Installation

Standalone Installation

Starting with iris 5.1.0, standalone Windows installers and executables are available. You can find them on
the GitHub release page <https://github.com/LaurentRDC/iris-ued/releases/latest/>.

The standalone installers and executables make the installation of iris completely separate from any other
Python installation. This method should be preferred, unless Python scripting using the iris library is required.

Installing the Python Package

If you want to script using iris data structures and algorithms, you need to install the iris-ued package.

Note

Users are strongly recommended to manage these dependencies with the
excellent Intel Distribution for Python [https://software.intel.com/en-us/intel-distribution-for-python]
which provides easy access to all of the above dependencies and more.

iris is available on PyPI as iris-ued:

python -m pip install iris-ued

iris is also available on the conda-forge channel:

conda config --add channels conda-forge
conda install iris-ued

You can install the latest developer version of iris by cloning the git
repository:

git clone https://github.com/LaurentRDC/iris-ued.git

…then installing the package with:

cd iris-ued
python setup.py install

In Python code, iris can be imported as follows

import iris

Test data

Test reduced datasets are made available by the Siwick research group. The data can be accessed on the
public data repository [http://www.physics.mcgill.ca/siwicklab/publications.html]

Testing

If you want to check that all the tests are running correctly with your Python
configuration, type:

python setup.py test

Using iris: typical workflow

Before you start

You might want to download test datasets before you start to play around. Test reduced datasets are
made available by the Siwick research group. The data can be accessed on the
public data repository [http://www.physics.mcgill.ca/siwicklab/publications.html]

Startup

To start the GUI from the command line:

> python -m iris

Note that the command-line interface has some useful options:

> python -m iris --help
usage: iris [-h] [-v] {open,docs} ...

Iris is both a library for interacting with ultrafast electron diffraction
data, as well as a GUI frontend for interactively exploring this data. Below
are some helpful commands.

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit

Subcommands:
{open,docs} Available sub-commands
 open Dataset to open with iris start-up.
 docs Open online documentation in your default web browser.

Running this command without any parameters will launch the graphical user
interface. Documentation is available here: https://iris-ued.readthedocs.io/

Most importantly, you can programatically start the GUI with opening a dataset:

> python -m iris open --reduced ~/dataset.hdf5

The path can lead to a reduced HDF5 file (flag –reduced) or a raw dataset (flag –raw).
In case of a raw dataset, the dataset format will be guessed with the same rules as iris.open_raw().

The first blank screen is shown below.

[image: _images/startup.png]

Loading raw data

The file menu can be used to load raw data. Depending on the installed plugins, options will be available. To install
a new plug-in, use the following option:

[image: _images/load_plugin_option.png]
You’ll be able to select a plug-in file which will be copied to the plug-in directory. The plugin can be used immediately.
Once a plug-in is installed, a new raw data format will appear.

[image: _images/load_raw.png]
Here is an example of loaded raw data: Raw data controls are available to the right.

[image: _images/raw_data.png]

Data reduction

Once raw data is loaded, the following option becomes available:

[image: _images/reduction_dialog.png]
This opens the data reduction dialog.

[image: _images/reduction_window.png]
Parts of the data can be masked. To add a mask, use the controls on the top of the dialog. Masks can be moved and resized.
Note that all images will be masked, so this is best for beam blocks, known hot pixels, etc.

[image: _images/reduction_mask.png]
A preview of the mask can be generated:

[image: _images/mask_preview.png]
Once you are satisfied with the processing parameters, the ‘Launch processing’ button will open a file dialog so that
you can choose where to save the reduced HDF5 file. Processing might take a few minutes.

Data exploration

Once processing is complete, the resulting diffraction dataset will be loaded. New controls will be available.

[image: _images/processed_view.png]
The ‘Show/hide peak dynamics’ button can be toggled. Doing so allows for the exploration of the time-evolution of the data.

[image: _images/peak_dynamics_single.png]
When a diffraction dataset is loaded, new options become available.

[image: _images/dataset_options.png]
One of these options, ‘Compute angular averages’, is best suited for polycrystalline diffraction. It opens the following dialog:

[image: _images/azimuthal_dialog_1.png]
Drag and resize the red circle so it coincides with a diffraction ring. This will allow for the determination of the diffraction center.
The averaging will happen after clicking ‘Promote’. This might take a few minutes.

Polycrystalline data exploration

After the azimuthal averages have been computed, a new section of the GUI will be made available, with additional controls.

[image: _images/poly_view.png]
The top screen shows the superposition of all radial profiles. Dragging the yellow lines allows for exploration of time-evolution
on the bottom screen. Note that the trace colors on the top are associated with the time-points and colors of the bottom image.

[image: _images/poly_view_2.png]
The baseline can be removed using the controls on the right. You can play with the baseline parameters and compute a baseline many times
without any problems.

[image: _images/poly_view_3.png]

Polycrystalline scattering vector calibration

On the above images, the scattering vector range might not be right. To calibrate the scattering vector range
based on a known structure, select the ‘Calibrate scattering vector’ option from the ‘Dataset’ menu.

[image: _images/calibrate_option.png]
This opens the calibration dialog.

[image: _images/calibration_dialog.png]
You must either select a structure file (CIF) or one of the built-in structures. Once a structure is selected, it’s description
will be printed on the screen. Make sure this is the crystal structure you expect.

Then, drag the left and right yellow bars on two diffraction peaks with known Miller indices. Click ‘Calibrate’ to calibrate the
scattering vector range.

[image: _images/calibration_dialog_2.png]

Datasets in Iris

The DiffractionDataset object

The DiffractionDataset object is the basis for iris’s interaction with
ultrafast electron diffraction data. DiffractionDataset objects are simply
HDF5 files with a specific layout, and associated methods:

from iris import DiffractionDataset
import h5py

assert issubclass(DiffractionDataset, h5py.File) # yep

You can take a look at h5py’s documentation [http://docs.h5py.org/en/latest/] to familiarize yourself
with h5py.File.

You can also use other HDF5 bindings to inspect DiffractionDataset instances.

Creating a DiffractionDataset

An easy way to create a DiffractionDataset is through the DiffractionDataset.from_collection() method, which
saves diffraction patterns and metadata:

	
classmethod DiffractionDataset.from_collection(patterns, filename, time_points, metadata, valid_mask=None, dtype=None, ckwargs=None, callback=None, **kwargs)

	Create a DiffractionDataset from a collection of diffraction patterns and metadata.

	Parameters

	
	patterns (iterable of ndarray or ndarray) – Diffraction patterns. These should be in the same order as time_points. Note that
the iterable can be a generator, in which case it will be consumed.

	filename (str [https://docs.python.org/3.6/library/stdtypes.html#str] or path-like) – Path to the assembled DiffractionDataset.

	time_points (array_like, shape (N,)) – Time-points of the diffraction patterns, in picoseconds.

	metadata (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – Valid keys are contained in DiffractionDataset.valid_metadata.

	valid_mask (ndarray or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Boolean array that evaluates to True on valid pixels. This information is useful in
cases where a beamblock is used.

	dtype (dtype or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Patterns will be cast to dtype. If None (default), dtype will be set to the same
data-type as the first pattern in patterns.

	ckwargs (dict [https://docs.python.org/3.6/library/stdtypes.html#dict], optional) – HDF5 compression keyword arguments. Refer to h5py’s documentation for details.
Default is to use the lzf compression pipeline.

	callback (callable or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Callable that takes an int between 0 and 99. This can be used for progress update when
patterns is a generator and involves large computations.

	kwargs – Keywords are passed to h5py.File constructor.
Default is file-mode ‘x’, which raises error if file already exists.
Default libver is ‘latest’.

	Returns

	dataset

	Return type

	DiffractionDataset

The required metadata that must be passed to DiffractionDataset.from_collection() is also listed in
DiffractionDataset.valid_metadata. Metadata not listed in DiffractionDataset.valid_metadata
will be ignored.

An other possibility is to create a DiffractionDataset from a AbstractRawDataset subclass using the
DiffractionDataset.from_raw() method :

	
classmethod DiffractionDataset.from_raw(raw, filename, exclude_scans=None, valid_mask=None, processes=1, callback=None, align=True, normalize=True, ckwargs=None, dtype=None, **kwargs)

	Create a DiffractionDataset from a subclass of AbstractRawDataset.

	Parameters

	
	raw (AbstractRawDataset instance) – Raw dataset instance.

	filename (str [https://docs.python.org/3.6/library/stdtypes.html#str] or path-like) – Path to the assembled DiffractionDataset.

	exclude_scans (iterable of ints or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Scans to exclude from the processing. Default is to include all scans.

	valid_mask (ndarray or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Boolean array that evaluates to True on valid pixels. This information is useful in
cases where a beamblock is used.

	processes (int [https://docs.python.org/3.6/library/functions.html#int] or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Number of Processes to spawn for processing. Default is number of available
CPU cores.

	callback (callable or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Callable that takes an int between 0 and 99. This can be used for progress update.

	align (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True (default), raw images will be aligned on a per-scan basis.

	normalize (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, images within a scan are normalized to the same integrated diffracted intensity.

	ckwargs (dict [https://docs.python.org/3.6/library/stdtypes.html#dict] or None [https://docs.python.org/3.6/library/constants.html#None], optional) – HDF5 compression keyword arguments. Refer to h5py’s documentation for details.

	dtype (dtype or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Patterns will be cast to dtype. If None (default), dtype will be set to the same
data-type as the first pattern in patterns.

	kwargs – Keywords are passed to h5py.File constructor.
Default is file-mode ‘x’, which raises error if file already exists.

	Returns

	dataset

	Return type

	DiffractionDataset

See also

	open_raw()

	open raw datasets by guessing the appropriate format based on available plug-ins.

	Raises

	IOError : If the filename is already associated with a file.

Important Methods for the DiffractionDataset

The following three methods are the bread-and-butter of interacting with data. See the API section
for a complete description.

	
DiffractionDataset.diff_data(timedelay, relative=False, out=None)

	Returns diffraction data at a specific time-delay.

	Parameters

	
	timdelay (float [https://docs.python.org/3.6/library/functions.html#float] or None [https://docs.python.org/3.6/library/constants.html#None]) – Timedelay [ps]. If None, the entire block is returned.

	relative (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, data is returned relative to the average of all diffraction patterns
before photoexcitation.

	out (ndarray or None [https://docs.python.org/3.6/library/constants.html#None], optional) – If an out ndarray is provided, h5py can avoid
making intermediate copies.

	Returns

	arr – Time-delay data. If out is provided, arr is a view
into out.

	Return type

	ndarray

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – If timedelay does not exist.

	
DiffractionDataset.diff_eq()

	Returns the averaged diffraction pattern for all times before photoexcitation.
In case no data is available before photoexcitation, an array of zeros is returned.
The result of this function is cached to minimize overhead.

Time-zero can be adjusted using the shift_time_zero method.

	Returns

	I – Diffracted intensity [counts]

	Return type

	ndarray, shape (N,)

	
DiffractionDataset.time_series(rect, relative=False, out=None)

	Integrated intensity over time inside bounds.

	Parameters

	
	rect (4-tuple of ints) – Bounds of the region in px. Bounds are specified as [row1, row2, col1, col2]

	relative (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, data is returned relative to the average of all diffraction patterns
before photoexcitation.

	out (ndarray or None [https://docs.python.org/3.6/library/constants.html#None], optional) – 1-D ndarray in which to store the results. The shape
should be compatible with (len(time_points),)

	Returns

	out

	Return type

	ndarray, ndim 1

The PowderDiffractionDataset object

For polycrystalline data, we can define more data structures and methods. A PowderDiffractionDataset is a strict
subclass of a DiffractionDataset, and hence all methods previously described are also available.

Specializing a DiffractionDataset object into a PowderDiffractionDataset is done as follows:

from iris import PowderDiffractionDataset
dataset_path = 'C:\\path_do_dataset.hdf5' # DiffractionDataset already exists

with PowderDiffractionDataset.from_dataset(dataset_path, center) as dset:
 # Do computation

Important Methods for the PowderDiffractionDataset

The following methods are specific to polycrystalline diffraction data. See the API section
for a complete description.

	
PowderDiffractionDataset.powder_eq()

	Returns the average powder diffraction pattern for all times before photoexcitation.
In case no data is available before photoexcitation, an array of zeros is returned.

	Parameters

	bgr (bool [https://docs.python.org/3.6/library/functions.html#bool]) – If True, background is removed.

	Returns

	I – Diffracted intensity [counts]

	Return type

	ndarray, shape (N,)

	
PowderDiffractionDataset.powder_data(timedelay, bgr=False, relative=False, out=None)

	Returns the angular average data from scan-averaged diffraction patterns.

	Parameters

	
	timdelay (float [https://docs.python.org/3.6/library/functions.html#float] or None [https://docs.python.org/3.6/library/constants.html#None]) – Time-delay [ps]. If None, the entire block is returned.

	bgr (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, background is removed.

	relative (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, data is returned relative to the average of all diffraction patterns
before photoexcitation.

	out (ndarray or None [https://docs.python.org/3.6/library/constants.html#None], optional) – If an out ndarray is provided, h5py can avoid
making intermediate copies.

	Returns

	I – Diffracted intensity [counts]

	Return type

	ndarray, shape (N,) or (N,M)

	
PowderDiffractionDataset.powder_calq(crystal, peak_indices, miller_indices)

	Determine the scattering vector q corresponding to a polycrystalline diffraction pattern
and a known crystal structure.

For best results, multiple peaks (and corresponding Miller indices) should be provided; the
absolute minimum is two.

	Parameters

	
	crystal (skued.Crystal instance) – Crystal that gave rise to the diffraction data.

	peak_indices (n-tuple of ints) – Array index location of diffraction peaks. For best
results, peaks should be well-separated. More than two peaks can be used.

	miller_indices (iterable of 3-tuples) – Indices associated with the peaks of peak_indices. More than two peaks can be used.
E.g. indices = [(2,2,0), (-3,0,2)]

	Raises

	
	ValueError : if the number of peak indices does not match the number of Miller indices.

	ValueError : if the number of peaks given is lower than two.

	
PowderDiffractionDataset.compute_baseline(first_stage, wavelet, max_iter=50, level=None, **kwargs)

	Compute and save the baseline computed based on the dual-tree complex wavelet transform.
All keyword arguments are passed to scikit-ued’s baseline_dt function.

	Parameters

	
	first_stage (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Wavelet to use for the first stage. See skued.available_first_stage_filters() for a list of suitable arguments

	wavelet (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Wavelet to use in stages > 1. Must be appropriate for the dual-tree complex wavelet transform.
See skued.available_dt_filters() for possible values.

	max_iter (int [https://docs.python.org/3.6/library/functions.html#int], optional) –

	level (int [https://docs.python.org/3.6/library/functions.html#int] or None [https://docs.python.org/3.6/library/constants.html#None], optional) – If None (default), maximum level is used.

HDF5 layout

DiffractionDataset instances (and by extension, PowderDiffractionDataset instances) are a specialization of HDF5 files.
Therefore, it is possible to inspect and manipulate instances with any other tool that has bindings to the HDF5 libraries. The
HDF5 layout is presented below.

[image: _images/datastructure.png]

Dataset Plug-ins

To use your own raw data with iris, a plug-in functionality is made available.

Plug-ins are Python modules that implement a subclass of AbstractRawDataset, and should be placed in ~/iris_plugins (C:\Users\UserName\iris_plugins on Windows). Subclasses
of AbstractRawDataset are automatically detected by iris and can be used via the GUI.

Installed plug-ins can be imported from iris.plugins:

from iris.plugins import DatasetSubclass

which would work if the DatasetSubclass is defined in the file ~/iris_plugins/<anything>.py. Example plug-ins is available here [https://github.com/LaurentRDC/iris-ued/tree/master/example_plugins].
Plug-ins used by members of the Siwick research group are visible here [https://github.com/Siwick-Research-Group/iris-ued-plugins].

Installing a plug-in

To install a plug-in that you have written in a file named ~/myplugin.py:

import iris
iris.install_plugin('~/myplugin.py')

Installing a plug-in in the above makes it immediately available.

	install_plugin(path)

	Install and load an iris plug-in.

Subclassing AbstractRawDataset

To take advantage of iris’s DiffractionDataset and PowderDiffractionDataset,
an appropriate subclass of AbstractRawDataset must be implemented. This subclass can then be fed
to DiffractionDataset.from_raw() to produce a DiffractionDataset.

How to assemble a AbstractRawDataset subclass

Ultrafast electron diffraction experiments typically have multiple scans. Each scan consists
of a time-delay sweep. You can think of it as one scan being an experiment, and so each dataset
is composed of multiple, equivalent experiments.

To subclass AbstractRawDataset, the method AbstractRawDataset.raw_data() must minimally implemented.
It must follow the following specification:

	
AbstractRawDataset.raw_data(timedelay, scan=1, **kwargs)

	Returns an array of the image at a timedelay and scan.

	Parameters

	
	timdelay (float [https://docs.python.org/3.6/library/functions.html#float]) – Acquisition time-delay.

	scan (int [https://docs.python.org/3.6/library/functions.html#int], optional) – Scan number. Default is 1.

	kwargs – Keyword-arguments are ignored.

	Returns

	arr

	Return type

	~numpy.ndarray, ndim 2

	Raises

	
	ValueError : if timedelay or scan are invalid / out of bounds.

	IOError : Filename is not associated with an image/does not exist.

For better performance, or to tailor data reduction to your data acquisition scheme,
the following method can also be overloaded:

	
AbstractRawDataset.reduced(exclude_scans=None, align=True, normalize=True, mask=None, processes=1, dtype=<class 'float'>)

	Generator of reduced dataset. The reduced diffraction patterns are generated in order of time-delay.

This particular implementation normalizes diffracted intensity of pictures acquired at the same time-delay
while rejecting masked pixels.

	Parameters

	
	exclude_scans (iterable or None [https://docs.python.org/3.6/library/constants.html#None], optional) – These scans will be skipped when reducing the dataset.

	align (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True (default), raw diffraction patterns will be aligned using the masked normalized
cross-correlation approach. See skued.align for more information.

	normalize (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True (default), equivalent diffraction pictures (e.g. same time-delay, different scans)
are normalized to the same diffracted intensity.

	mask (array-like of bool or None [https://docs.python.org/3.6/library/constants.html#None], optional) – If not None, pixels where mask = True are ignored for certain operations (e.g. alignment).

	processes (int [https://docs.python.org/3.6/library/functions.html#int] or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Number of Processes to spawn for processing.

	dtype (numpy.dtype or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Reduced patterns will be cast to dtype.

	Yields

	pattern (~numpy.ndarray, ndim 2)

AbstractRawDataset metadata

AbstractRawDataset subclasses automatically include the following metadata:

	date (str): Acquisition date. Date format is up to you.

	energy (float): Electron energy in keV.

	pump_wavelength (int): photoexcitation wavelength in nanometers.

	fluence (float): photoexcitation fluence \(\text{mJ}/\text{cm}**2\).

	time_zero_shift (float): Time-zero shift in picoseconds.

	temperature (float): sample temperature in Kelvins.

	exposure (float): picture exposure in seconds.

	resolution (2-tuple): pixel resolution of pictures.

	time_points (tuple): time-points in picoseconds.

	scans (tuple): experimental scans.

	camera_length (float): sample-to-camera distance in meters.

	pixel_width (float): pixel width in meters.

	notes (str): notes.

Subclasses can add more metadata or override the current metadata with new defaults.

All proper subclasses of AbstractRawDataset are automatically added to the possible raw dataset formats
that can be loaded from the GUI.

iris.install_plugin

	
iris.install_plugin(path)

	Install and load an iris plug-in. Installed plug-ins are loaded
at every iris start-up.

New in version 5.0.4.

	Parameters

	path (path-like) – Path to the plug-in. This plug-in file will be copied.

Reference/API

Opening raw datasets

To open any raw dataset, take a look at the open_raw() function.

	
iris.open_raw(path)

	Open a raw data item, guessing the AbstractRawDataset instance that
should be used based on available plug-ins.

This function can also be used as a context manager:

with open_raw('.') as dset:
 ...

	Parameters

	path (path-like) – Path to the file/folder containing the raw data.

	Returns

	raw – The raw dataset. If no format could be guessed, an RuntimeError is raised.

	Return type

	AbstractRawDataset instance

	Raises

	RuntimeError : if the data format could not be guessed.

Raw Dataset Classes

	AbstractRawDataset([source, metadata])

	Abstract base class for ultrafast electron diffraction data set.

Diffraction Dataset Classes

	DiffractionDataset(name[, mode, driver, …])

	Abstraction of an HDF5 file to represent diffraction datasets.

	PowderDiffractionDataset(*args, **kwargs)

	Abstraction of HDF5 files for powder diffraction datasets.

iris.AbstractRawDataset

	
class iris.AbstractRawDataset(source=None, metadata=None)

	Abstract base class for ultrafast electron diffraction data set.
AbstractRawDataset allows for enforced metadata types and values,
as well as a standard interface. For example, AbstractRawDataset
implements the context manager interface.

Minimally, the following method must be implemented in subclasses:

	raw_data

It is suggested to also implement the following magic method:

	__init__

	__exit__

Optionally, the display_name class attribute can be specified.

For better results or performance during reduction, the following methods
can be specialized:

	reduced

A list of concrete implementations of AbstractRawDatasets is available in
the implementations class attribute. Subclasses are automatically added.

The call signature must remain the same for all overwritten methods.

	Parameters

	
	source (object [https://docs.python.org/3.6/library/functions.html#object]) – Data source, for example a directory or external file.

	metadata (dict [https://docs.python.org/3.6/library/stdtypes.html#dict] or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Metadata and experimental parameters. Dictionary keys that are
not valid metadata, they are ignored. Metadata can also be
set directly later.

	Raises

	TypeError : if an item from the metadata has an unexpected type.

	
__init__(source=None, metadata=None)

	
	Parameters

	
	source (object [https://docs.python.org/3.6/library/functions.html#object]) – Data source, for example a directory or external file.

	metadata (dict [https://docs.python.org/3.6/library/stdtypes.html#dict] or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Metadata and experimental parameters. Dictionary keys that are
not valid metadata, they are ignored. Metadata can also be
set directly later.

	Raises

	TypeError : if an item from the metadata has an unexpected type.

Methods

	__init__([source, metadata])

	
	param source

	Data source, for example a directory or external file.

	iterscan(scan, **kwargs)

	Generator function of diffraction patterns as part of a scan, in time-delay order.

	raw_data(timedelay[, scan])

	Returns an array of the image at a timedelay and scan.

	reduced([exclude_scans, align, normalize, …])

	Generator of reduced dataset.

	update_metadata(metadata)

	Update metadata from a dictionary.

	
__exit__(*exc)

	Raise any exception triggered within the runtime context.

	
__init__(source=None, metadata=None)

	
	Parameters

	
	source (object [https://docs.python.org/3.6/library/functions.html#object]) – Data source, for example a directory or external file.

	metadata (dict [https://docs.python.org/3.6/library/stdtypes.html#dict] or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Metadata and experimental parameters. Dictionary keys that are
not valid metadata, they are ignored. Metadata can also be
set directly later.

	Raises

	TypeError : if an item from the metadata has an unexpected type.

	
__repr__()

	Return repr(self).

	
iterscan(scan, **kwargs)

	Generator function of diffraction patterns as part of a scan, in
time-delay order.

	Parameters

	
	scan (int [https://docs.python.org/3.6/library/functions.html#int]) – Scan from which to yield the data.

	kwargs – Keyword-arguments are passed to raw_data method.

	Yields

	data (~numpy.ndarray, ndim 2)

See also

	itertime()

	generator of diffraction patterns for a single time-delay, in scan order

	
itertime(timedelay, exclude_scans=None, **kwargs)

	Generator function of diffraction patterns of the same time-delay, in
scan order.

	Parameters

	
	timedelay (float [https://docs.python.org/3.6/library/functions.html#float]) –

	from which to yield the data. (Scan) –

	exclude_scansiterable or None, optional

	These scans will be skipped.

	kwargs

	Keyword-arguments are passed to raw_data method.

	Yields

	data (~numpy.ndarray, ndim 2)

See also

	iterscan()

	generator of diffraction patterns for a single scan, in time-delay order

	
metadata

	Experimental parameters and dataset metadata as a dictionary.

	
raw_data(timedelay, scan=1, **kwargs)

	Returns an array of the image at a timedelay and scan.

	Parameters

	
	timdelay (float [https://docs.python.org/3.6/library/functions.html#float]) – Acquisition time-delay.

	scan (int [https://docs.python.org/3.6/library/functions.html#int], optional) – Scan number. Default is 1.

	kwargs – Keyword-arguments are ignored.

	Returns

	arr

	Return type

	~numpy.ndarray, ndim 2

	Raises

	
	ValueError : if timedelay or scan are invalid / out of bounds.

	IOError : Filename is not associated with an image/does not exist.

	
reduced(exclude_scans=None, align=True, normalize=True, mask=None, processes=1, dtype=<class 'float'>)

	Generator of reduced dataset. The reduced diffraction patterns are generated in order of time-delay.

This particular implementation normalizes diffracted intensity of pictures acquired at the same time-delay
while rejecting masked pixels.

	Parameters

	
	exclude_scans (iterable or None [https://docs.python.org/3.6/library/constants.html#None], optional) – These scans will be skipped when reducing the dataset.

	align (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True (default), raw diffraction patterns will be aligned using the masked normalized
cross-correlation approach. See skued.align for more information.

	normalize (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True (default), equivalent diffraction pictures (e.g. same time-delay, different scans)
are normalized to the same diffracted intensity.

	mask (array-like of bool or None [https://docs.python.org/3.6/library/constants.html#None], optional) – If not None, pixels where mask = True are ignored for certain operations (e.g. alignment).

	processes (int [https://docs.python.org/3.6/library/functions.html#int] or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Number of Processes to spawn for processing.

	dtype (numpy.dtype or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Reduced patterns will be cast to dtype.

	Yields

	pattern (~numpy.ndarray, ndim 2)

	
update_metadata(metadata)

	Update metadata from a dictionary. Only appropriate keys are used; irrelevant keys are ignored.

	Parameters

	metadata (dictionary) – See AbstractRawDataset.valid_metadata for valid keys.

iris.DiffractionDataset

	
class iris.DiffractionDataset(name, mode=None, driver=None, libver=None, userblock_size=None, swmr=False, rdcc_nslots=None, rdcc_nbytes=None, rdcc_w0=None, track_order=None, **kwds)

	Abstraction of an HDF5 file to represent diffraction datasets.

Create a new file object.

See the h5py user guide for a detailed explanation of the options.

	name

	Name of the file on disk, or file-like object. Note: for files
created with the ‘core’ driver, HDF5 still requires this be
non-empty.

	mode

	r Readonly, file must exist
r+ Read/write, file must exist
w Create file, truncate if exists
w- or x Create file, fail if exists
a Read/write if exists, create otherwise (default)

	driver

	Name of the driver to use. Legal values are None (default,
recommended), ‘core’, ‘sec2’, ‘stdio’, ‘mpio’.

	libver

	Library version bounds. Supported values: ‘earliest’, ‘v108’,
‘v110’, and ‘latest’. The ‘v108’ and ‘v110’ options can only be
specified with the HDF5 1.10.2 library or later.

	userblock

	Desired size of user block. Only allowed when creating a new
file (mode w, w- or x).

	swmr

	Open the file in SWMR read mode. Only used when mode = ‘r’.

	rdcc_nbytes

	Total size of the raw data chunk cache in bytes. The default size
is 1024**2 (1 MB) per dataset.

	rdcc_w0

	The chunk preemption policy for all datasets. This must be
between 0 and 1 inclusive and indicates the weighting according to
which chunks which have been fully read or written are penalized
when determining which chunks to flush from cache. A value of 0
means fully read or written chunks are treated no differently than
other chunks (the preemption is strictly LRU) while a value of 1
means fully read or written chunks are always preempted before
other chunks. If your application only reads or writes data once,
this can be safely set to 1. Otherwise, this should be set lower
depending on how often you re-read or re-write the same data. The
default value is 0.75.

	rdcc_nslots

	The number of chunk slots in the raw data chunk cache for this
file. Increasing this value reduces the number of cache collisions,
but slightly increases the memory used. Due to the hashing
strategy, this value should ideally be a prime number. As a rule of
thumb, this value should be at least 10 times the number of chunks
that can fit in rdcc_nbytes bytes. For maximum performance, this
value should be set approximately 100 times that number of
chunks. The default value is 521.

	track_order

	Track dataset/group/attribute creation order under root group
if True. If None use global default h5.get_config().track_order.

	Additional keywords

	Passed on to the selected file driver.

	
__init__(name, mode=None, driver=None, libver=None, userblock_size=None, swmr=False, rdcc_nslots=None, rdcc_nbytes=None, rdcc_w0=None, track_order=None, **kwds)

	Create a new file object.

See the h5py user guide for a detailed explanation of the options.

	name

	Name of the file on disk, or file-like object. Note: for files
created with the ‘core’ driver, HDF5 still requires this be
non-empty.

	mode

	r Readonly, file must exist
r+ Read/write, file must exist
w Create file, truncate if exists
w- or x Create file, fail if exists
a Read/write if exists, create otherwise (default)

	driver

	Name of the driver to use. Legal values are None (default,
recommended), ‘core’, ‘sec2’, ‘stdio’, ‘mpio’.

	libver

	Library version bounds. Supported values: ‘earliest’, ‘v108’,
‘v110’, and ‘latest’. The ‘v108’ and ‘v110’ options can only be
specified with the HDF5 1.10.2 library or later.

	userblock

	Desired size of user block. Only allowed when creating a new
file (mode w, w- or x).

	swmr

	Open the file in SWMR read mode. Only used when mode = ‘r’.

	rdcc_nbytes

	Total size of the raw data chunk cache in bytes. The default size
is 1024**2 (1 MB) per dataset.

	rdcc_w0

	The chunk preemption policy for all datasets. This must be
between 0 and 1 inclusive and indicates the weighting according to
which chunks which have been fully read or written are penalized
when determining which chunks to flush from cache. A value of 0
means fully read or written chunks are treated no differently than
other chunks (the preemption is strictly LRU) while a value of 1
means fully read or written chunks are always preempted before
other chunks. If your application only reads or writes data once,
this can be safely set to 1. Otherwise, this should be set lower
depending on how often you re-read or re-write the same data. The
default value is 0.75.

	rdcc_nslots

	The number of chunk slots in the raw data chunk cache for this
file. Increasing this value reduces the number of cache collisions,
but slightly increases the memory used. Due to the hashing
strategy, this value should ideally be a prime number. As a rule of
thumb, this value should be at least 10 times the number of chunks
that can fit in rdcc_nbytes bytes. For maximum performance, this
value should be set approximately 100 times that number of
chunks. The default value is 521.

	track_order

	Track dataset/group/attribute creation order under root group
if True. If None use global default h5.get_config().track_order.

	Additional keywords

	Passed on to the selected file driver.

	
__repr__()

	Return repr(self).

	
compression_params

	Compression options in the form of a dictionary

	
diff_apply(func, callback=None, processes=1)

	Apply a function to each diffraction pattern possibly in parallel. The diffraction patterns
will be modified in-place.

Warning

This is an irreversible in-place operation.

New in version 5.0.3.

	Parameters

	
	func (callable) – Function that takes in an array (diffraction pattern) and returns an
array of the exact same shape, with the same data-type.

	callback (callable or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Callable that takes an int between 0 and 99. This can be used for progress update.

	processes (int [https://docs.python.org/3.6/library/functions.html#int] or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Number of parallel processes to use. If None, all available processes will be used.
In case Single Writer Multiple Reader mode is not available, processes is ignored.

New in version 5.0.6.

	Raises

	TypeError : if func is not a proper callable

	
diff_data(timedelay, relative=False, out=None)

	Returns diffraction data at a specific time-delay.

	Parameters

	
	timdelay (float [https://docs.python.org/3.6/library/functions.html#float] or None [https://docs.python.org/3.6/library/constants.html#None]) – Timedelay [ps]. If None, the entire block is returned.

	relative (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, data is returned relative to the average of all diffraction patterns
before photoexcitation.

	out (ndarray or None [https://docs.python.org/3.6/library/constants.html#None], optional) – If an out ndarray is provided, h5py can avoid
making intermediate copies.

	Returns

	arr – Time-delay data. If out is provided, arr is a view
into out.

	Return type

	ndarray

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – If timedelay does not exist.

	
diff_eq

	Returns the averaged diffraction pattern for all times before photoexcitation.
In case no data is available before photoexcitation, an array of zeros is returned.
The result of this function is cached to minimize overhead.

Time-zero can be adjusted using the shift_time_zero method.

	Returns

	I – Diffracted intensity [counts]

	Return type

	ndarray, shape (N,)

	
classmethod from_collection(patterns, filename, time_points, metadata, valid_mask=None, dtype=None, ckwargs=None, callback=None, **kwargs)

	Create a DiffractionDataset from a collection of diffraction patterns and metadata.

	Parameters

	
	patterns (iterable of ndarray or ndarray) – Diffraction patterns. These should be in the same order as time_points. Note that
the iterable can be a generator, in which case it will be consumed.

	filename (str [https://docs.python.org/3.6/library/stdtypes.html#str] or path-like) – Path to the assembled DiffractionDataset.

	time_points (array_like, shape (N,)) – Time-points of the diffraction patterns, in picoseconds.

	metadata (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – Valid keys are contained in DiffractionDataset.valid_metadata.

	valid_mask (ndarray or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Boolean array that evaluates to True on valid pixels. This information is useful in
cases where a beamblock is used.

	dtype (dtype or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Patterns will be cast to dtype. If None (default), dtype will be set to the same
data-type as the first pattern in patterns.

	ckwargs (dict [https://docs.python.org/3.6/library/stdtypes.html#dict], optional) – HDF5 compression keyword arguments. Refer to h5py’s documentation for details.
Default is to use the lzf compression pipeline.

	callback (callable or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Callable that takes an int between 0 and 99. This can be used for progress update when
patterns is a generator and involves large computations.

	kwargs – Keywords are passed to h5py.File constructor.
Default is file-mode ‘x’, which raises error if file already exists.
Default libver is ‘latest’.

	Returns

	dataset

	Return type

	DiffractionDataset

	
classmethod from_raw(raw, filename, exclude_scans=None, valid_mask=None, processes=1, callback=None, align=True, normalize=True, ckwargs=None, dtype=None, **kwargs)

	Create a DiffractionDataset from a subclass of AbstractRawDataset.

	Parameters

	
	raw (AbstractRawDataset instance) – Raw dataset instance.

	filename (str [https://docs.python.org/3.6/library/stdtypes.html#str] or path-like) – Path to the assembled DiffractionDataset.

	exclude_scans (iterable of ints or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Scans to exclude from the processing. Default is to include all scans.

	valid_mask (ndarray or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Boolean array that evaluates to True on valid pixels. This information is useful in
cases where a beamblock is used.

	processes (int [https://docs.python.org/3.6/library/functions.html#int] or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Number of Processes to spawn for processing. Default is number of available
CPU cores.

	callback (callable or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Callable that takes an int between 0 and 99. This can be used for progress update.

	align (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True (default), raw images will be aligned on a per-scan basis.

	normalize (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, images within a scan are normalized to the same integrated diffracted intensity.

	ckwargs (dict [https://docs.python.org/3.6/library/stdtypes.html#dict] or None [https://docs.python.org/3.6/library/constants.html#None], optional) – HDF5 compression keyword arguments. Refer to h5py’s documentation for details.

	dtype (dtype or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Patterns will be cast to dtype. If None (default), dtype will be set to the same
data-type as the first pattern in patterns.

	kwargs – Keywords are passed to h5py.File constructor.
Default is file-mode ‘x’, which raises error if file already exists.

	Returns

	dataset

	Return type

	DiffractionDataset

See also

	open_raw()

	open raw datasets by guessing the appropriate format based on available plug-ins.

	Raises

	IOError : If the filename is already associated with a file.

	
invalid_mask

	Array that evaluates to True on invalid pixels (i.e. on beam-block, hot pixels, etc.)

	
metadata

	Dictionary of the dataset’s metadata. Dictionary is sorted alphabetically by keys.

	
resolution

	Resolution of diffraction patterns (px, px)

	
shift_time_zero(shift)

	Insert a shift in time points. Reset the shift by setting it to zero. Shifts are
not consecutive, so that calling shift_time_zero(20) twice will not result
in a shift of 40ps.

	Parameters

	shift (float [https://docs.python.org/3.6/library/functions.html#float]) – Shift [ps]. A positive value of shift will move all time-points forward in time,
whereas a negative value of shift will move all time-points backwards in time.

	
symmetrize(mod, center, kernel_size=None, callback=None, processes=1)

	Symmetrize diffraction images based on n-fold rotational symmetry.

Warning

This is an irreversible in-place operation.

	Parameters

	
	mod (int [https://docs.python.org/3.6/library/functions.html#int]) – Fold symmetry number.

	center (array-like, shape (2,) or None [https://docs.python.org/3.6/library/constants.html#None]) – Coordinates of the center (in pixels). If None, the data is symmetrized around the
center of the images.

	kernel_size (float [https://docs.python.org/3.6/library/functions.html#float] or None [https://docs.python.org/3.6/library/constants.html#None], optional) – If not None, every diffraction pattern will be smoothed with a gaussian kernel.
kernel_size is the standard deviation of the gaussian kernel in units of pixels.

	callback (callable or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Callable that takes an int between 0 and 99. This can be used for progress update.

	processes (int [https://docs.python.org/3.6/library/functions.html#int] or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Number of parallel processes to use. If None, all available processes will be used.
In case Single Writer Multiple Reader mode is not available, processes is ignored.

New in version 5.0.6.

	Raises

	ValueError: if mod is not a divisor of 360.

See also

	diff_apply()

	apply an operation to each diffraction pattern one-by-one

	
time_series(rect, relative=False, out=None)

	Integrated intensity over time inside bounds.

	Parameters

	
	rect (4-tuple of ints) – Bounds of the region in px. Bounds are specified as [row1, row2, col1, col2]

	relative (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, data is returned relative to the average of all diffraction patterns
before photoexcitation.

	out (ndarray or None [https://docs.python.org/3.6/library/constants.html#None], optional) – 1-D ndarray in which to store the results. The shape
should be compatible with (len(time_points),)

	Returns

	out

	Return type

	ndarray, ndim 1

	
valid_mask

	Array that evaluates to True on valid pixels (i.e. not on beam-block, not hot pixels, etc.)

iris.PowderDiffractionDataset

	
class iris.PowderDiffractionDataset(*args, **kwargs)

	Abstraction of HDF5 files for powder diffraction datasets.

	
__init__(*args, **kwargs)

	Create a new file object.

See the h5py user guide for a detailed explanation of the options.

	name

	Name of the file on disk, or file-like object. Note: for files
created with the ‘core’ driver, HDF5 still requires this be
non-empty.

	mode

	r Readonly, file must exist
r+ Read/write, file must exist
w Create file, truncate if exists
w- or x Create file, fail if exists
a Read/write if exists, create otherwise (default)

	driver

	Name of the driver to use. Legal values are None (default,
recommended), ‘core’, ‘sec2’, ‘stdio’, ‘mpio’.

	libver

	Library version bounds. Supported values: ‘earliest’, ‘v108’,
‘v110’, and ‘latest’. The ‘v108’ and ‘v110’ options can only be
specified with the HDF5 1.10.2 library or later.

	userblock

	Desired size of user block. Only allowed when creating a new
file (mode w, w- or x).

	swmr

	Open the file in SWMR read mode. Only used when mode = ‘r’.

	rdcc_nbytes

	Total size of the raw data chunk cache in bytes. The default size
is 1024**2 (1 MB) per dataset.

	rdcc_w0

	The chunk preemption policy for all datasets. This must be
between 0 and 1 inclusive and indicates the weighting according to
which chunks which have been fully read or written are penalized
when determining which chunks to flush from cache. A value of 0
means fully read or written chunks are treated no differently than
other chunks (the preemption is strictly LRU) while a value of 1
means fully read or written chunks are always preempted before
other chunks. If your application only reads or writes data once,
this can be safely set to 1. Otherwise, this should be set lower
depending on how often you re-read or re-write the same data. The
default value is 0.75.

	rdcc_nslots

	The number of chunk slots in the raw data chunk cache for this
file. Increasing this value reduces the number of cache collisions,
but slightly increases the memory used. Due to the hashing
strategy, this value should ideally be a prime number. As a rule of
thumb, this value should be at least 10 times the number of chunks
that can fit in rdcc_nbytes bytes. For maximum performance, this
value should be set approximately 100 times that number of
chunks. The default value is 521.

	track_order

	Track dataset/group/attribute creation order under root group
if True. If None use global default h5.get_config().track_order.

	Additional keywords

	Passed on to the selected file driver.

	
__init__(*args, **kwargs)

	Create a new file object.

See the h5py user guide for a detailed explanation of the options.

	name

	Name of the file on disk, or file-like object. Note: for files
created with the ‘core’ driver, HDF5 still requires this be
non-empty.

	mode

	r Readonly, file must exist
r+ Read/write, file must exist
w Create file, truncate if exists
w- or x Create file, fail if exists
a Read/write if exists, create otherwise (default)

	driver

	Name of the driver to use. Legal values are None (default,
recommended), ‘core’, ‘sec2’, ‘stdio’, ‘mpio’.

	libver

	Library version bounds. Supported values: ‘earliest’, ‘v108’,
‘v110’, and ‘latest’. The ‘v108’ and ‘v110’ options can only be
specified with the HDF5 1.10.2 library or later.

	userblock

	Desired size of user block. Only allowed when creating a new
file (mode w, w- or x).

	swmr

	Open the file in SWMR read mode. Only used when mode = ‘r’.

	rdcc_nbytes

	Total size of the raw data chunk cache in bytes. The default size
is 1024**2 (1 MB) per dataset.

	rdcc_w0

	The chunk preemption policy for all datasets. This must be
between 0 and 1 inclusive and indicates the weighting according to
which chunks which have been fully read or written are penalized
when determining which chunks to flush from cache. A value of 0
means fully read or written chunks are treated no differently than
other chunks (the preemption is strictly LRU) while a value of 1
means fully read or written chunks are always preempted before
other chunks. If your application only reads or writes data once,
this can be safely set to 1. Otherwise, this should be set lower
depending on how often you re-read or re-write the same data. The
default value is 0.75.

	rdcc_nslots

	The number of chunk slots in the raw data chunk cache for this
file. Increasing this value reduces the number of cache collisions,
but slightly increases the memory used. Due to the hashing
strategy, this value should ideally be a prime number. As a rule of
thumb, this value should be at least 10 times the number of chunks
that can fit in rdcc_nbytes bytes. For maximum performance, this
value should be set approximately 100 times that number of
chunks. The default value is 521.

	track_order

	Track dataset/group/attribute creation order under root group
if True. If None use global default h5.get_config().track_order.

	Additional keywords

	Passed on to the selected file driver.

	
compute_angular_averages(center=None, normalized=False, angular_bounds=None, trim=True, callback=None)

	Compute the angular averages.

	Parameters

	
	center (2-tuple or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Center of the diffraction patterns. If None (default), the dataset
attribute will be used instead.

	normalized (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, each pattern is normalized to its integral.

	angular_bounds (2-tuple of float or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Angle bounds are specified in degrees. 0 degrees is defined as the positive x-axis.
Angle bounds outside [0, 360) are mapped back to [0, 360).

	trim (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, leading/trailing zeros - possibly due to masks - are trimmed.

	callback (callable or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Callable of a single argument, to which the calculation progress will be passed as
an integer between 0 and 100.

	
compute_baseline(first_stage, wavelet, max_iter=50, level=None, **kwargs)

	Compute and save the baseline computed based on the dual-tree complex wavelet transform.
All keyword arguments are passed to scikit-ued’s baseline_dt function.

	Parameters

	
	first_stage (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Wavelet to use for the first stage. See skued.available_first_stage_filters() for a list of suitable arguments

	wavelet (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Wavelet to use in stages > 1. Must be appropriate for the dual-tree complex wavelet transform.
See skued.available_dt_filters() for possible values.

	max_iter (int [https://docs.python.org/3.6/library/functions.html#int], optional) –

	level (int [https://docs.python.org/3.6/library/functions.html#int] or None [https://docs.python.org/3.6/library/constants.html#None], optional) – If None (default), maximum level is used.

	
classmethod from_dataset(dataset, center, normalized=True, angular_bounds=None, callback=None)

	Transform a DiffractionDataset instance into a PowderDiffractionDataset. This requires
computing the azimuthal averages as well.

	Parameters

	
	dataset (DiffractionDataset) – DiffractionDataset instance.

	center (2-tuple or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Center of the diffraction patterns. If None (default), the dataset
attribute will be used instead.

	normalized (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, each pattern is normalized to its integral. Default is False.

	angular_bounds (2-tuple of float or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Angle bounds are specified in degrees. 0 degrees is defined as the positive x-axis.
Angle bounds outside [0, 360) are mapped back to [0, 360).

	callback (callable or None [https://docs.python.org/3.6/library/constants.html#None], optional) – Callable of a single argument, to which the calculation progress will be passed as
an integer between 0 and 100.

	Returns

	powder

	Return type

	PowderDiffractionDataset

	
powder_baseline(timedelay, out=None)

	Returns the baseline data.

	Parameters

	
	timdelay (float [https://docs.python.org/3.6/library/functions.html#float] or None [https://docs.python.org/3.6/library/constants.html#None]) – Time-delay [ps]. If None, the entire block is returned.

	out (ndarray or None [https://docs.python.org/3.6/library/constants.html#None], optional) – If an out ndarray is provided, h5py can avoid
making intermediate copies.

	Returns

	out – If a baseline hasn’t been computed yet, the returned
array is an array of zeros.

	Return type

	ndarray

	
powder_calq(crystal, peak_indices, miller_indices)

	Determine the scattering vector q corresponding to a polycrystalline diffraction pattern
and a known crystal structure.

For best results, multiple peaks (and corresponding Miller indices) should be provided; the
absolute minimum is two.

	Parameters

	
	crystal (skued.Crystal instance) – Crystal that gave rise to the diffraction data.

	peak_indices (n-tuple of ints) – Array index location of diffraction peaks. For best
results, peaks should be well-separated. More than two peaks can be used.

	miller_indices (iterable of 3-tuples) – Indices associated with the peaks of peak_indices. More than two peaks can be used.
E.g. indices = [(2,2,0), (-3,0,2)]

	Raises

	
	ValueError : if the number of peak indices does not match the number of Miller indices.

	ValueError : if the number of peaks given is lower than two.

	
powder_data(timedelay, bgr=False, relative=False, out=None)

	Returns the angular average data from scan-averaged diffraction patterns.

	Parameters

	
	timdelay (float [https://docs.python.org/3.6/library/functions.html#float] or None [https://docs.python.org/3.6/library/constants.html#None]) – Time-delay [ps]. If None, the entire block is returned.

	bgr (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, background is removed.

	relative (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, data is returned relative to the average of all diffraction patterns
before photoexcitation.

	out (ndarray or None [https://docs.python.org/3.6/library/constants.html#None], optional) – If an out ndarray is provided, h5py can avoid
making intermediate copies.

	Returns

	I – Diffracted intensity [counts]

	Return type

	ndarray, shape (N,) or (N,M)

	
powder_eq

	Returns the average powder diffraction pattern for all times before photoexcitation.
In case no data is available before photoexcitation, an array of zeros is returned.

	Parameters

	bgr (bool [https://docs.python.org/3.6/library/functions.html#bool]) – If True, background is removed.

	Returns

	I – Diffracted intensity [counts]

	Return type

	ndarray, shape (N,)

	
powder_time_series(rmin, rmax, bgr=False, relative=False, units='pixels', out=None)

	Average intensity over time.
Diffracted intensity is integrated in the closed interval [rmin, rmax]

	Parameters

	
	rmin (float [https://docs.python.org/3.6/library/functions.html#float]) – Lower scattering vector bound [1/A]

	rmax (float [https://docs.python.org/3.6/library/functions.html#float]) – Higher scattering vector bound [1/A].

	bgr (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, background is removed. Default is False.

	relative (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, data is returned relative to the average of all diffraction patterns
before photoexcitation.

	units (str [https://docs.python.org/3.6/library/stdtypes.html#str], {'pixels', 'momentum'}) – Units of the bounds rmin and rmax.

	out (ndarray or None [https://docs.python.org/3.6/library/constants.html#None], optional) – 1-D ndarray in which to store the results. The shape
should be compatible with (len(time_points),)

	Returns

	out – Average diffracted intensity over time.

	Return type

	ndarray, shape (N,)

	
px_radius

	Pixel-radius of azimuthal average

	
scattering_vector

	Array of scattering vector norm \(|q|\) [\(1/\AA\)]

	
shift_time_zero(*args, **kwargs)

	Shift time-zero uniformly across time-points.

	Parameters

	shift (float [https://docs.python.org/3.6/library/functions.html#float]) – Shift [ps]. A positive value of shift will move all time-points forward in time,
whereas a negative value of shift will move all time-points backwards in time.

What’s new

5.2.0 (development)

	Official support for Linux.

	Plug-ins installed via the GUI can now be used right away. No restarts required.

	Added the iris.plugins.load_plugin function to load plug-ins without installing them. Useful for testing.

	Plug-ins can now have the display_name property which will be displayed in the GUI. This is optional and backwards-compatible.

	Siwick Research Group-specific plugins were removed. They can be found here: https://github.com/Siwick-Research-Group/iris-ued-plugins

	Switched to Azure Pipelines for continuous integration builds;

	Added cursor information (position and image value) for processed data view;

	Fixed an issue where very large relative differences in datasets would crash the GUI displays;

	Fixed an issue where time-series fit would not display properly in fractional change mode;

5.1.3

	Added logging support for the GUI component. Logs can be reached via the help menu

	Added an update check. You can see whether an update is available via the help menu, as well as via the status bar.

	Added the ability to view time-series dynamics in absolute units AND relative change.

	Pinned dependency to scikit-ued, to prevent upgrade to scikit-ued 2.0 unless appropriate.

	Pinned dependency to npstreams, to prevent upgrade to npstreams 2.0 unless appropriate.

5.1.2

	Fixed an issue where the QDarkStyle internal imports were absolute.

5.1.1

	Fixed an issue where data reduction would freeze when using more than one CPU;

	Removed the auto-update mechanism. Update checks will run in the background only;

	Fixed an issue where the in-progress indicator would freeze;

	Moved tests outside of source repository;

	Updated GUI stylesheet to QDarkStyle 2.6.6;

5.1.0

	Added explicit support for Python 3.7;

	Usability tweaks, for example more visible mask controls;

	Added the ability to create standalone executables via PyInstaller;

	Added the ability to create Windows installers;

5.0.5.1

	Due to new forced image orientation, objects on screens were not properly registered (e.g. diffraction center finder).

5.0.5

	Added the ability to fit exponentials to time-series;

	Added region-of-interest text bounds for easier time-series exploration

	Enforced PyQtGraph to use row-major image orientation

	Datasets are now opened in read-only mode unless absolutely necessary. This should make it safer to handler multiple instances of iris at the same time.

5.0.4

	Better plug-in handling and command-line interface.

5.0.3

The major change in this version is the ability to guess raw dataset formats using the iris.open_raw function.
This allows the possibility to start the GUI and open a dataset at the same time.

5.0.2

The package now only has dependencies that can be installed through conda

5.0.1

This is a minor bug-fix release that also includes user interface niceties (e.g. link to online documentation) and user
experience niceties (e.g. confirmation message if you forget pixel masks).

5.0.0

This new version includes a completely rewritten library and GUI front-end. Earlier datasets will need to be re-processed.
New features:

	Faster performance thanks to better data layout in HDF5;

	Plug-in architecture for various raw data formats;

	Faster performance thanks to npstreams package;

	Easier to extend GUI skeleton;

	Online documentation accessible from the GUI;

	Continuous integration.

Index

 _
 | A
 | C
 | D
 | F
 | I
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	__exit__() (iris.AbstractRawDataset method)

 	__init__() (iris.AbstractRawDataset method), [1]

 	(iris.DiffractionDataset method)

 	(iris.PowderDiffractionDataset method), [1]

 	
 	__repr__() (iris.AbstractRawDataset method)

 	(iris.DiffractionDataset method)

A

 	
 	AbstractRawDataset (class in iris)

C

 	
 	compression_params (iris.DiffractionDataset attribute)

 	
 	compute_angular_averages() (iris.PowderDiffractionDataset method)

 	compute_baseline() (iris.PowderDiffractionDataset method)

D

 	
 	diff_apply() (iris.DiffractionDataset method)

 	diff_data() (iris.DiffractionDataset method)

 	
 	diff_eq (iris.DiffractionDataset attribute)

 	DiffractionDataset (class in iris)

F

 	
 	from_collection() (iris.DiffractionDataset class method)

 	
 	from_dataset() (iris.PowderDiffractionDataset class method)

 	from_raw() (iris.DiffractionDataset class method), [1]

I

 	
 	install_plugin() (in module iris)

 	invalid_mask (iris.DiffractionDataset attribute)

 	
 	iterscan() (iris.AbstractRawDataset method)

 	itertime() (iris.AbstractRawDataset method)

M

 	
 	metadata (iris.AbstractRawDataset attribute)

 	(iris.DiffractionDataset attribute)

O

 	
 	open_raw() (in module iris), [1]

P

 	
 	powder_baseline() (iris.PowderDiffractionDataset method)

 	powder_calq() (iris.PowderDiffractionDataset method)

 	powder_data() (iris.PowderDiffractionDataset method)

 	
 	powder_eq (iris.PowderDiffractionDataset attribute)

 	powder_time_series() (iris.PowderDiffractionDataset method)

 	PowderDiffractionDataset (class in iris)

 	px_radius (iris.PowderDiffractionDataset attribute)

R

 	
 	raw_data() (iris.AbstractRawDataset method), [1]

 	
 	reduced() (iris.AbstractRawDataset method), [1]

 	resolution (iris.DiffractionDataset attribute)

S

 	
 	scattering_vector (iris.PowderDiffractionDataset attribute)

 	shift_time_zero() (iris.DiffractionDataset method)

 	(iris.PowderDiffractionDataset method)

 	
 	symmetrize() (iris.DiffractionDataset method)

T

 	
 	time_series() (iris.DiffractionDataset method)

U

 	
 	update_metadata() (iris.AbstractRawDataset method)

V

 	
 	valid_mask (iris.DiffractionDataset attribute)

iris.McGillRawDataset

iris.open_raw

	
iris.open_raw(path)

	Open a raw data item, guessing the AbstractRawDataset instance that
should be used based on available plug-ins.

This function can also be used as a context manager:

with open_raw('.') as dset:
 ...

	Parameters

	path (path-like) – Path to the file/folder containing the raw data.

	Returns

	raw – The raw dataset. If no format could be guessed, an RuntimeError is raised.

	Return type

	AbstractRawDataset instance

	Raises

	RuntimeError : if the data format could not be guessed.

 _images/dataset_options.png
Process raw data

few azimuthal averages
Symmetrize data (beta)

Calculate angular average

Update dataset metadata

_images/datastructure.png
group / (main file)

Metadat ems

Acquisition date

Sample temperature
Photoexcitation fluence
Photoexcitation wavelength

group /processed

dataset /valid_mask

group /powder (optional)

e

dataset /powder/intensity

Metadata
items

W dataset /powder/baseline (optional)

_images/calibration_dialog.png
0.0038

0.0036

0.0034

0.0032

0.003

0.0028

0.0026

0.0024

0.0022

0.002

0.0018

0.0016

0.0014

0.0012

0.001

0.0008

0.0006

0.0004

(v

200

400

600

800

1000

1200

1400

Scattering Calibration

Calibrate the scattering vector range of polycrystalline
data. Select two peaks of known Miller indices by
dragging the vertical lines, and use an appropriate
structure. Some structures are built-in, but you can also
use a CIF of your own. Make sure the structure
parameters are what you expect before calibration.

Select a database structure: | Ac -

Load structure from file: | Open explorer

Selected crystal structure
No structure selected.

tetesk: %0 [ko [o 4

Riohteeak: 6 [ko [o 4

Calibrate Cancel

_images/calibration_dialog_2.png
0.0038

0.0036

0.0034

0.0032

0.003

0.0028

0.0026

0.0024

0.0022

0.002

0.0018

0.0016

0.0014

0.0012

0.001

0.0008

0.0006

0.0004

(v

Scattering Calibration

Calibrate the scattering vector range of polycrystalline
data. Select two peaks of known Miller indices by
dragging the vertical lines, and use an appropriate
structure. Some structures are built-in, but you can also

use a CIF of your own. Make sure the structure
parameters are what you expect before calibration.

Select a database structure: | vo2-m1

Load structure from file: | Open explorer |

Selected crystal structure

< Crystal object with following unit cell:

Atom O @ (0.90, 0.71, 0.30)

Atom O @ (0.10, 0.29, 0.70)

Atom O @ (0.10, 0.21, 0.20)

Atom O @ (0.90, 0.79, 0.80)

Atom O @ (0.39, 0.69, 0.29)

Atom O @ (0.39, 0.81, 0.79)

Atom O @ (0.61, 0.19, 0.21)

Atom O @ (0.61, 0.31, 0.71)

Atom V@ (0.76, 0.48, 0.47)

Atom V@ (0.24, 0.53, 0.53)

... omitting 2 atoms ...

Lattice parameters:

5.743R, 4.517R, 5.375A4, 90.00°, 122.60°,
90.00°
Source:

c:\users\laurent\onedrive\mcgill\code\scikit-ued
\skued\structure\cifs\vo2-m1.cif >

P [o Jfea Jler]

Wit E 2 o[- k2 o[-0 4

Calibrate | | Cancel|

200

400

600

800

1000

1200

1400

_images/load_raw.png
Load raw dataset... 4 Load McGillRawDataset

Load dataset Load LegacyMcGilRawDataset
Load diffraction picture Load MinimalRawDataset
Load MerlinRawDataset
Load McGillShiftedRawDataset

Load plug-in (restarts program)

_images/mask_preview.png
10000

. 8000
' 6000
; . 4000
; . . * 2000

* 0

ROI

Menu

_images/iris_screen.png
File Plug-ins Dataset Display Help

View raw dataset | View processed dataset | View azimuthal averages
Diffraction dataset controls

Time-delay: -5.500ps <>

Time-zero shift: |~ -0.500 ps | | Clear time-zero shift

Dataset metadata | Dataset notes

4000

Dataset metadata

File Plug-ins Dataset Display Help

View raw dataset | View processed dataset | View azimuthal averages
Diffraction dataset controls

Azimuthally-averaged pattern(s) Time-delay: -8.000ps s

Diffraction time-serie Time-zero shift: |~ 0.000 ps | | Clear time-zero shift

Powder dataset controls

Baseline parameters

First stage wavelet: | sym6

Dual-tree wavelet: | qshift3

Extensions mode: constant

Intensity (

® i ! \ Iterations: - 100

20]
time (ps)] Compute baseline

8 Show horizontal grid (8 Show vertical grid () Horizontal log mode [Vertical log

5 Dataset metadata | Dataset notes

Scattering vector (1/A)

Dataset metadata

Diffraction time-series
aligned False

°0000°o.o.000
angular_bounds (0, 360)
camera_length 0.23

center (937, 990)

40 60 80 1d chunks None
time (ps)

®) Show horizontal grid) Show vertical grid (J Horizontal log mode (J Vertical log mode () Connect time-series

_images/load_plugin_option.png
Load raw dataset...

> | View azimuthal averages
Load dataset

Load diffraction picture

Load plug-in (restarts program)

Copy a plug-in file into the internal storage. The application will restart and the new plug-in will be available.

_images/peak_dynamics_single.png
File Dataset Help

View raw dataset | View processed dataset | View azimuthal averages

Raw dataset controls
8000 <
Time-delay: 1.250ps <|[>
. » v
7000 Scan: 31 <|[[>
. d
6000 . .
. Diffraction dataset controls
® 5000 Time-delay: -1.000ps <|[>
Time-zero shift: |~ 0.500 | | Clear time-zero shift
" 4000 5
Display options
. . ” 3000 Show/hide peak dynamics. | show relative data (?)
-
® 2000
Dataset metadata | Dataset notes
. . . _
1000
: Dataset metadata
|1 .
0 aligned False
<
ROI | Menu camera_length 023
. - . chunks True
Diffraction time-series
1.00|— compression None
. energy 90.0
0.99 ooy NN 100 v
—~ .n
E] N
5 e
> 0.98 N
2 %
£ .
0.97 oo
E
0" o,
0.96 0t e '.~."“....'.." . + : + * + * 1
-1 [1 2 3 4 5 6 7 8 9 10
time (ps)

() Show horizontal grid [®) Show vertical grid [Horizontal log mode [Vertical log mode (") Connect time-series |~ Symbol size: 5 |

Version 5.0.0

_images/poly_view.png
©

File Dataset Help

View raw dataset | View processed dataset | View azimuthal averages

Azimuthally-averaged pattern(s)

Raw dataset controls
Time-delay: 1.250ps <|[>
Scan: 31 <||>

Diffraction dataset controls
Time-delay: -10.000ps <|[>

Time-zero shift: |~ 0.000 ps | | Clear time-zero shift

0.004
0.003
g
£
5
3
< o0.002F
z
5
£
0.001
ol =
200 200 600 800 1000 1200 1400 1600
Scattering vector (1/A)
Diffraction time-series
1.00 . -
0.99 5 .
= PR 1
5 ’ R . .
z e i
5 PR . . .
£ 098 . T e . T +
. .
0.97
-10 0 10 20 EY 20 50 60 70 EY 90 100
time (ps)

() Show horizontal grid [®) Show vertical grid [Horizontal log mode [Vertical log mode (") Connect time-series |~ Symbol size: 5 |

Version 5.0.0

Display options
Show/hide peak dynamics | show relative data (?)
Powder dataset controls
Baseline parameters
First stage wavelet: | sym6 -
Dual-tree wavelet: | qshift3 -
Extensions mode: constant -
Tterations: - 100 -

Compute baseline

Display options
Show baseline-removed| | Show relative
Dataset metadata | Dataset notes
Dataset metadata

aligned False 1
angular bounds (0, 360)
camera length 0.23
center (758, 1003)
chunks True

_images/azimuthal_dialog_1.png
2600

2400

2200

2000

1800

1600

1400

1200

1000

800

600

400

200

-200
ROI

I\

Menu

Azimuthal Average Options

Drag and resize the red circle until it sits on
top of a diffraction ring. This allows for easy
determination of the picture center.

Normalize (?)

[Restrict azimuthal angle

Min. angle: |~ -
Max. angle: |~ -
Promote Cancel

_images/calibrate_option.png
File |DAESEH Help

Process raw data

iew azimuthal aver

Symmetrize data (beta)
Calculate angular average
Update dataset metadata
Recompute angular average

Calibrate scattering vector

0.0008

counts)

0.0006

_images/poly_view_2.png
File Dataset Help

View raw dataset | View processed dataset | View azimuthal averages

Raw dataset controls
. Azimuthally-averaged pattern(s) Time-delay: 1.250ps s
Scan: 31 <|[>
0.003 Diffraction dataset controls
Time-delay: -10.000ps <|[>
n Time-zero shift: |~ 0.000ps | | Clear time-zero shift
5
3
; 0.002 Display options
g Show/hide peak dynamics' | show relative data (?)
£ /\
0-001 Powder dataset controls
Baseline parameters
First stage wavelet: | sym6 -
ol -
Dual-tree wavelet: | gshift3 -
200 200 500 B 1000 1200 1400 1600
Scattering vector (1/A) Extensions mode: | constant 2
Diffraction time-series Tterations: - 100 3
1.00 . Compute baseline
0.998 ..,
0.996 oyt e Display options
0.994 RO Show baseline-removed| | Show relative
) A o] .
E]
5 0.99 - . . Dataset metadata | Dataset notes
% 0.988 £ *
2 0086 R Dataset metadata
= [08 1 ¢
S n
0.984 K . . aligned False
0.982 RS + .
0.8 . . . angular_bounds (0, 360)
0.978 .) camera_length 023
10 0 10 20 EQ 0 Y 50 70 80 90 100 center (758, 1003)
time (ps)
(8] Show horizontal grid (8] Show vertical grid [Horizontal log mode (] Vertical log mode (] Connect time-series |~ Symbol size: 5 = chunks True

Version 5.0.0

nav.xhtml

 Table of Contents

 		
 iris: Ultrafast electron diffraction data exploration

 		
 Installation

 		
 Standalone Installation

 		
 Installing the Python Package

 		
 Test data

 		
 Testing

 		
 Using iris: typical workflow

 		
 Before you start

 		
 Startup

 		
 Loading raw data

 		
 Data reduction

 		
 Data exploration

 		
 Polycrystalline data exploration

 		
 Polycrystalline scattering vector calibration

 		
 Datasets in Iris

 		
 The DiffractionDataset object

 		
 Creating a DiffractionDataset

 		
 Important Methods for the DiffractionDataset

 		
 The PowderDiffractionDataset object

 		
 Important Methods for the PowderDiffractionDataset

 		
 HDF5 layout

 		
 Dataset Plug-ins

 		
 Installing a plug-in

 		
 iris.install_plugin

 		
 Subclassing AbstractRawDataset

 		
 How to assemble a AbstractRawDataset subclass

 		
 AbstractRawDataset metadata

 		
 Reference/API

 		
 Opening raw datasets

 		
 Raw Dataset Classes

 		
 iris.AbstractRawDataset

 		
 Diffraction Dataset Classes

 		
 iris.DiffractionDataset

 		
 iris.PowderDiffractionDataset

 		
 What’s new

 		
 5.2.0 (development)

 		
 5.1.3

 		
 5.1.2

 		
 5.1.1

 		
 5.1.0

 		
 5.0.5.1

 		
 5.0.5

 		
 5.0.4

 		
 5.0.3

 		
 5.0.2

 		
 5.0.1

 		
 5.0.0

_images/raw_data.png
File Dataset Help

View raw dataset | View processed dataset | View azimuthal averages

3 Raw dataset controls
Time-delay: 1.250ps <|[>
. . # 2000 Scan: 31 <|[>

. ‘ - 8000
. . » . 7000

" - 6000

. ‘ . . . 5000

. 4000
. . o

3000

2000

1000

ROI | Menu

Version 5.0.0 0%

_images/reduction_dialog.png
Vi Process raw data

few azimuthal averages

_images/poly_view_3.png
File Dataset Help

View raw dataset | View processed dataset | View azimuthal averages

0.001
0.0008
0.0006

0.0004 n

0.0002

Intensity (counts)

| M nn

Azimuthally-averaged pattern(s)

Raw dataset controls
Time-delay: 1.250ps

Scan: 31

Diffraction dataset controls
Time-delay: -10.000ps <]

Time-zero shift: |+ 0.000ps +| | Clear time-zero shift |

Display options

[GHGWhide eakaynamics] | show relative data (?)|

200 400

10 .
0.99 .
098 W

0.97 ode .
0.96 o

0.95 b

Intensity (a. u.)

0.94

0.93 .

0.92

0.91 .

600

800 1000
Scattering vector (1/A)

Diffraction time-series

1200

1400

1600

Powder dataset controls

Baseline parameters ————————
First stage wavelet: | sym6 -

Dual-tree wavelet: | qshift3 -
Extensions mode: | constant -

Tterations: |- 100 4

Display options

| show relative|

Dataset metadata | Dataset notes |

-10 [10 20

30 40 50 60
time (ps)

®) Show horizontal grid (8 Show vertical grid [Horizontal log mode (] Vertical log mode () Connect time-series |~ Symbol size: 5 =

70

80 90

100

Dataset metadata

aligned False

angular_bounds (0, 360)

camera_length 023
center (758, 1003)
chunks True

Version 5.0.0

_images/processed_view.png
File Dataset Help

View raw dataset | View processed dataset | View azimuthal averages

Version 5.0.0

8000

7000

6000

5000

4000

3000

2000

1000

ROI

I\

Menu

Dataset metadata | Dataset notes

Raw dataset controls
Time-delay: 1.250ps <|[>
Scan: 31 <||>

Diffraction dataset controls
Time-delay: -1.000ps <|[>

Time-zero shift: |~ 0.500 ps | | Clear time-zero shift

Display options
Showjhide peak dynamics | | show relative data (?)

Dataset metadata
aligned False 1
camera length 0.23
chunks True
compression None
energy 200
. o .

_images/startup.png
File Dataset Help

View raw dataset | View processed dataset | View azimuthal averages

Version 5.0.0

0.9

0.8

0.7

0.6

()

0.4

0.3

[

0.1

_static/ajax-loader.gif

_images/reduction_mask.png
Add circular mask | | Add rectangular mask | | Preview mask | | Clear all masks

10000

8000

6000

4000

2000

ROI

Menu

Data Reduction Options
Number of CPU cores: |~ 7
Scans to exclude: e.g.1:5, 6,7, 10.

Final data type: Auto

() Perform alignment (?)

Normalize (2)
() Enable Fletcher32 filter ()
() Enable shuffle filter (2)

HDF5 Compression filters
® No compression
O 1ZF
O Gzp

GZIP level: -

Launch Cancel

_images/reduction_window.png
Add circular mask | | Add rectangular mask | | Preview mask | | Clear all masks

10000

8000

6000

4000

2000

ROI

Menu

Data Reduction Options
Number of CPU cores: |~ 7
Scans to exclude: e.g.1:5, 6,7, 10.

Final data type: Auto

() Perform alignment (?)

Normalize (2)
() Enable Fletcher32 filter ()
() Enable shuffle filter (2)

HDF5 Compression filters
® No compression
O 1ZF
O Gzp

GZIP level: -

Launch Cancel

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

